[bzoj1004][HNOI2008]Cards

Description

小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出 Sr 张红色, Sb 张蓝色, Sg 张绿色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了 M 种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数( P 为质数).

Input

  第一行输入 5 个整数: Sr,Sb,Sg,m,p(m60,m+1<p<100) n=Sr+Sb+Sg
接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1,X2,...Xn ,恰为 1 n 的一个排列,
表示使用这种洗牌法,第 i 位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m 种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

Output

  不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

  有2 种本质上不同的染色法RGB 和RBG,使用洗牌法 231 一次可得GBR 和BGR,使用洗牌法 312 一次 可得BRG和GRB。

100% 数据满足 Max(Sr,Sb,Sg)20

题解

这道题是群论中Burnside引理与Polya计数的半裸题
每种洗牌方式可以看作一个置换,根据群的定义可知,每种洗牌方式加上一个所有元素不变的置换

(1122......nn)

就构成了一个置换群。

Burnside引理:用 D(aj) 表示在置换a_j下不变的元素个数。 L 表示本质不同的方案数。

L=1|G|j=1sD(aj)

Polya定理:设 G p个对象的一个置换群,江 m 种颜色涂染p个对象,泽不同颜色方案为:

L=1|G|i=1smc(gi)

其中 G={g1,g2,...gs} , c(gi) 为置换 gi 的循环节数。

由于每一种颜色是有数量限制的,所以我们不能直接使用Polya计数定理。
我们可以对每一个置换做一个背包dp,用类似Polya定理的方法,把置换的每一个循环节看作一个大小为循环长度的物品,之后三维背包dp求出选出 Sr 个红色, Sg 个绿色, Sb 个蓝色的方案数,这样我们就在 O(n3) 的时间复杂度求出了 D(ai) ,总的时间复杂度 O(mn3)

My Code

/**************************************************************
    Problem: 1004
    User: infinityedge
    Language: C++
    Result: Accepted
    Time:896 ms
    Memory:5940 kb
****************************************************************/

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int a[105][105],vis[105][105],len[105][105],ct[105];
int f[105][105][105];
int n,m,s1,s2,s3,p,ans;
inline void cut(int x){
    for(int i=1;i<=n;i++){
        if(!vis[x][i]){
            vis[x][i]=1;
            len[x][++ct[x]]=1;
            int j=a[x][i];
            while(j!=i){
                vis[x][j]=1;
                len[x][ct[x]]++;
                j=a[x][j];
            }
        }
    }
}
inline int dp(int x){
    memset(f,0,sizeof f);
    f[1][len[x][1]][0]=f[1][0][len[x][1]]=f[1][0][0]=1;
    for(int i=2;i<=ct[x];i++){
        int t=len[x][i];
        for(int j=0;j<=s1;j++){
            for(int k=0;k<=s2;k++){
                f[i][j][k]=(f[i][j][k]+f[i-1][j][k])%p;
                if(j>=t)f[i][j][k]=(f[i][j][k]+f[i-1][j-t][k])%p;
                if(k>=t)f[i][j][k]=(f[i][j][k]+f[i-1][j][k-t])%p;
            }
        }
        //printf("%d %d %d %d\n",f[i][0][0],f[i][0][1],f[i][1][0],f[i][1][1]);
    }
    return f[ct[x]][s1][s2];
}
int qpow(int x,int y){
    int res=1;
    for(;y;y>>=1,x=x*x%p){
        if(y&1)res=res*x%p;
    }
    return res;
}
int main(){
    scanf("%d%d%d%d%d",&s1,&s2,&s3,&m,&p);
    n=s1+s2+s3;
    bool bb=1;
    for(int i=1;i<=m;i++){
        bool b=1;
        for(int j=1;j<=n;j++){
            scanf("%d",&a[i][j]);
            if(a[i][j]!=j)b=0;  
        }
        if(b)bb=0;
    }
    if(bb){
        m++;
        for(int i=1;i<=n;i++){
            a[m][i]=i;
        }
    }
    for(int i=1;i<=m;i++){
        cut(i);
    }
    for(int i=1;i<=m;i++){
        ans+=dp(i);
        if(ans>=p)ans-=p;
        //printf("%d\n",ans);
    }
    ans=ans*qpow(m,p-2)%p;
    printf("%d\n",ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值