《图深度学习》读后感

本文是对《图深度学习》一书的读后感,作者认为该书可作为图神经网络的教材,适合高年级本科生、研究生和算法研发人员。书中严谨的数学定义和公式体系,以及每章的框架性总结,使得学习更加系统和高效。尽管内容偏理论,缺乏实践操作指导,但整体质量较高,是深入理解图神经网络的优秀资源。

上一篇文章挖的坑,现在填。由于《图深度学习》这本是目前4本中文图神经网络里最学术的一本,看完还是要花一段时间的,所以写地慢了很多。

之前为了做4本书的比较,粗粗地浏览了一遍这本书,总体感受是这是一本可以当作教材的图神经网络的书。页数比其他3本都多,而且内容比较得全面。由于2位作者都是中国人,而2位译者又是作者的学生和师妹/弟,所以总体的文字也比较流畅,没有出现之前看到的不少英译本的书籍所出现的文字不通顺的问题。仔细地读了第二遍后,感觉这书比之前的几本书要好不少。非常感谢作者和译者用心地写,用心地翻译。

老规矩,先上书的基本信息。

  • 页数:300页,20个印张,384千字。2021年5月第一次印刷。全彩色印刷。

  • 价格:定价是118块,我到手价差不多80多。但相比来说,20个印张,还是全彩色的,这个价格已经算很良心了。赞一个。

和我第一遍浏览的总体体会一样,这是一本可以当图神经网络教材的书。不管是在校的高年级本科生、研究生,还是已经工作的算法研发人员,都值得读一读和相对仔细地学习。

说这本书适合做教材有两点主要的原因。

一是:这本书的以严格的数学定义和数学公式来讲解图和图上的机器学习的各种模型。这就对于想认真学习的这个题目的读者来说,可以从基础搞起,把根基打的扎实一点。这一点和斯坦福的CS224W课程有类似的地方,是一种对于学生负责的态度。其他的基本图神经网络的书也会大量用数学公式,但是公式大多是来自于引用论文,所以格式非常的乱,需要读者自己分辨和转换。而本书的公式是成体系的,在第二章里完成了对各种公式和图结构的数学表述,后续的各个章节都严格按照第二章的定义来展开讲解,并且把引用论文的公式也都转换成统一的符号表达,这样看起来非常体系化,适合前后对照学习。

二是:这本书的核心模型部分的每一章(4-9章)都有一个蛮好的框架性总结。比如,第4章“图嵌入”里面的“四组件”的图嵌入框架,第5章“图神经网络”里面的“图滤波+图池化”框架,第6章“可扩展图神经网络”的3种采样分类等等。这种框架性的总结让我的学习过程简单了很多。首先我对一个学习主题有了总体的认识,明白了这个主题的水有多深。而

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值