题目来自剑指Offer
题目:
思路(1):
朴素算法,每走m步,删除一个数。游标越界重回起点。
复杂度:O(m*n),n为环中数字,m为走的步数。
分析,每走m步删除一个数,则删除n-1个数,需要(n-1)*m步,即为O(m*n)。
代码:借助STL的list类
#include <iostream>
#include <assert.h>
#include <list>
using namespace std;
int LastNum(int n,int m)
{
assert(n > 0 && m > 0);
list<int> circle;
for (int i = 0;i < n;i++)
{
circle.push_back(i);
}
int nCount = 1;
list<int>::iterator iterTmp;
list<int>::iterator iter = circle.begin();
while(circle.size() != 1)
{
if (nCount == m)
{
iterTmp = iter++;//注意迭代器失效的问题
circle.erase(iterTmp);
nCount = 1;
}
else
{
nCount++;
iter++;
}
if (iter == circle.end())
{
iter = circle.begin();
}
}
return *(circle.begin());
}
int main()
{
cout<<LastNum(5,3)<<endl;//3
cout<<LastNum(1,10)<<endl;//0
cout<<LastNum(8,5)<<endl;//2
cout<<LastNum(6,6)<<endl;//3
system("pause");
return 1;
}
思路(2),借助书中的思想,很巧妙。
思想:每删除一个数,都做一次转换,把剩余的数转换为删之前的形式,再次进行删除,使得时间复杂度降为O(n)。
思路:
这里假设,给出n个数字(0到n-1),每次删除第m个数字,其中用f(n,m)表示剩余的最后哪一个数字。
删除之前的序列:0,1,2,3,...,k-1,k,k+1,...,n。
假设本次删除的数字为k,其中k = (m-1)%n,则删除后的序列为:0,1,2,3,...,k-1,k+1,...,n。