每日一题(60) - 圆圈中最后剩下的数字

题目来自剑指Offer

题目:


思路(1):

朴素算法,每走m步,删除一个数。游标越界重回起点。

复杂度:O(m*n),n为环中数字,m为走的步数。

分析,每走m步删除一个数,则删除n-1个数,需要(n-1)*m步,即为O(m*n)。

代码:借助STL的list类

#include <iostream>
#include <assert.h>
#include <list>
using namespace std;
int LastNum(int n,int m)
{
	assert(n > 0 && m > 0);
	list<int> circle;
	for (int i = 0;i < n;i++)
	{
		circle.push_back(i);
	}
	int nCount = 1;
	list<int>::iterator iterTmp;
	list<int>::iterator iter = circle.begin();
	while(circle.size() != 1)
	{
		if (nCount == m)
		{
			iterTmp = iter++;//注意迭代器失效的问题
			circle.erase(iterTmp);
			nCount = 1;
		}
		else
		{
			nCount++;
			iter++;
		}
		if (iter == circle.end())
		{
			iter = circle.begin();
		}
	}
	
	return *(circle.begin());
}
int main()
{
	cout<<LastNum(5,3)<<endl;//3
	cout<<LastNum(1,10)<<endl;//0
	cout<<LastNum(8,5)<<endl;//2
	cout<<LastNum(6,6)<<endl;//3
	system("pause");
	return 1;
}
思路(2),借助书中的思想,很巧妙。

思想:每删除一个数,都做一次转换,把剩余的数转换为删之前的形式,再次进行删除,使得时间复杂度降为O(n)。

思路:

这里假设,给出n个数字(0到n-1),每次删除第m个数字,其中f(n,m)表示剩余的最后哪一个数字

删除之前的序列:0,1,2,3,...,k-1,k,k+1,...,n。

假设本次删除的数字为k,其中k = (m-1)%n,则删除后的序列为:0,1,2,3,...,k-1,k+1,...,n。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值