数据结构之抽象数据类型

抽象数据类型(Abstract Data Type 简称ADT)

定义:一个数学模型以及定义在该模型上的一组操作。

作用:抽象数据类型可以使我们更容易描述现实世界。

关键:使用它的人可以只关心它的逻辑特征,不需要了解它的存储方式。

其实按照面向对象的思想,ADT相当于接口。

描述抽象数据类型的标准格式:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
ADT   抽象数据类型名
 
Data
           数据元素之间逻辑关系的定义
           
Operation
           操作1
                    初始条件
                    操作结果描述
           操作2
                   ......
           操作n
                   ......
                   
endADT

线性表的抽象数据类型:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
ADT List
 
Data
          /*线性表的数据对象集合为{a1,a2,...,an},每个元素的类型均为DataType.
            其中,除第一个元素a1外,每一个元素有且只有一个直接前驱元素,除了最后一
            个元素an外,每一个元素有且只有一个直接后继元素。数据元素直接是一对一的关系。*/
       
Operation
          InitList(*L);        //初始化操作,建立一个空的线性表
          ListEmpty(L);        //若线性表为空,返回true,否则返回false
          ClearList(*L);       //清空线性表
          GetElem(L,i,*e);     //查找线性表中的第i个位置的元素值,并赋值给e
          LocateElem(L,e);     //查找线性表L中与给定值e相等的元素,如果查找成功,
                              //则返回第一个相同的元素在L中的下标;否则,返回0表示失败
          ListInsert(*L,i,e);  //在线性表L的第i个位置插入元素e
          ListDelete(*L,i,*e); //删除线性表L中第i个位置元素,并用e返回其值
          ListLength(L);       //返回线性表L的元素的个数,也就是线性表的长度
          
end ADT

的抽象数据类型:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
ADT   Stack
 
Data  
          /*同线性表。元素具有相同类型,相邻元素具有前驱和后继关系。*/
          
Operation
          InitStack(*S);      //初始化操作,建立一个空栈S
          DestroyStack(*S);   //若栈存在,则销毁它
          ClearStack(*S);     //将栈清空
          StackEmpty(S);      //若栈为空,则返回true,否则返回false
          GetTop(S,*e);       //若栈存在且非空,用e返回S的栈顶元素
          Push(*S,e);         //若栈S存在,插入新元素e到栈S中并成为栈顶元素
          Pop(*S,*e);         //若栈S不空,删除栈中栈顶元素,并用e返回其值
          StackLength(S);     //返回栈S的元素个数
          
endADT

队列的抽象数据类型:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
ADT   Queue
Data  
           /*同线性表。元素具有相同的类型,响铃元素具有前驱和后继关系*/
           
Operation         
        InitQueue(*Q);        //初始化操作,建立一个空队列Q        
        DestroyQueue(*Q);     //若队列Q存在,则销毁它         
        ClearQueue(*Q);       //将队列Q清空        
        StackQueue(Q);        //若队列Q为空,则返回true,否则返回false         
        GetHead(Q,*e);        //若队列Q存在且非空,用e返回Q的队头元素        
        EnQueue(*Q,e);        //若队列Q存在,插入新元素e到队列Q中并成为队尾元素         
        DeQueue(*Q,*e);       //若队列Q不空,删除队列中队头元素,并用e返回其值         
        QueueLength(Q);       //返回队列Q的元素个数 
                
endADT

的抽象数据类型:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
ADT   String
   
Data  
           /*串中的元素仅由一个字符组成,相邻元素具有前驱和后继关系*/ 
       
Operation  
       StrAssign(T,*chars);         //生成一个其值等于字符串常量chars的串T    
       StrCopy(T,S);                //串S存在,由串S复制得串T 
       StrEmpty(S);                 //若S为空串,则返回true,否则返回false 
       StrCompare(S,T);             //若S>T,则返回值>0;若S=T,则返回值=0;若S < T,则返回值 < 0  
       StrLength(S);                //返回S的元素个数,称为串的长度
       ClearString(S);              //清空串  
       Concat(T,S1,S2);             //用T返回由S1和S2联接而成的新串   
       SubString(Sub,S,pos,len);    //串S存在,1≤pos≤StrLength(S)且0≤len≤StrLength(S)-pos+1,用Sub返回
                                   //串S的第pos个字符长度为len的子串  
       Index(S,T,pos);              //串S和T存在,T是非空串,1≤pos≤StrLength(S),若主串S中存在和串T值相同的
                                   //子串,则返回它在主串S中第pos个字符之后第一次出现的位置;否则函数值为0 
       Replace(S,T,V);              //初始条件:串S, T和V存在,T是非空串,用V替换主串S中出现的所有与T相等的不
                                   //重叠的子串      
       StrInsert(S,pos,T);          //串S和T存在, 1≤pos≤StrLength(S)+1,在串S的第pos个字符之前插入串T
       StrDelete(S,pos,len);        //串S存在, 1≤pos≤StrLength(S)-len+1,从串S中删除第pos个字符起长度
                                   //为len的子串
       DestroyString(S);            //若串S存在,则销毁它  
 
endADT

的抽象数据类型:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
ADT   Tree
 
Data    
           /*树是一个由根节点和若干棵子树构成。树中结点具有相同数据结构类型及层次关系*/
           
Operation
      InitTree(*T);                  //构造空树T
      DestoryTree(*T);               //销毁树T
      CreateTree(*T,definition);     //按definition中给出树的定义来构造树
      CleateTree(*T);                //若树T存在,则清空树
      TreeEmpty(T);                  //若T为空树则返回true,否则返回false
      TreeDepth(T);                  //返回T的深度
      Root(T);                       //返回T的根节点
      Value(T,cur_e);                //cur_e是树T中一个,返回此结点的值
      Assgin(T,cur_e,value);         //给树T的结点cur_e赋值为value
      Parent(T,cur_e);               //若cur_e是树T的非根节点,则返回它的父节点,否则返回空
      LeftChild(T,cur_e);            //若cur_e是树T的非叶结点,则返回它的左孩子,否则返回空
      RightSibling(T,cur_e);         //若cur_e是树T的非叶结点,则返回它的右兄弟,否则返回空
      InsertChild(*T,*p,i,c);        //其中p指向树T的某个结点,i为所指向结点p的度加上1,
                                    //若非空树c与T不相交,操作结果为:插入c为树T中p指向结点的第i棵子树
      DeleteChild(*T,*p,i);          //其中p指向树T的某个结点,i为所指向结点p的度,则删除T中p指向结点的第i棵子树
      
endADT

的抽象数据类型:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
ADT  Graph
 
Data
            /*定点的有穷非空集合和边的集合*/
        
Operation
       CreateGraph(*G,V,VR);        //按V和VR的定义构造图G
       DestroyGraph(*G);            //若图G存在,则销毁图G
       LocateVex(G,u);              //若G中存在顶点u,则返回该顶点在图中位置
       GetVex(G,v);                 //返回图G中顶点v的值
       PutVex(&G,v,value);          //将图G中顶点v赋值value
       FirstAdjVex(G,v);            //返回v的第一个邻接顶点。若顶点在G中没有邻接顶点,则返回“空”
       NextAdjVex(G,v,w);           //返回v的(相对于w的)下一个邻接顶点。若w是v的最后一个邻接点,则返回“空
       InsertVex(*G,v);             //在图G中增添新顶点v  
       DeleteVex(*G,v);             //删除G中顶点v及其相关的弧
       InsertArc(*G,v,w);           //在G中增添弧<v,w>,若G是无向的,则还增添对称弧<v,w>
       DeleteArc(*G,v,w);           //在G中删除弧<v,w>,若G是无向的,则还删除对称弧<v,w>
       DFSTraverse(G);              //对图G进行深度优先遍历
       HFSTraverse(G);              //对图G进行广度优先遍历
       
endADT

搞了一天,终于总结完毕!O(∩_∩)O~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值