minimax定理证明

本文目录


#minimax定理成立与纳什均衡的等价性

选取 p ∗ p^* p 使得 min ⁡ q U ( p ∗ , q ) = max ⁡ p min ⁡ q U ( p , q ) \min\limits_q U(p^*,q) = \max\limits_p \min\limits_q U(p,q) qminU(p,q)=pmaxqminU(p,q)
选取 q ∗ q^* q 使得 max ⁡ p U ( p , q ∗ ) = min ⁡ q max ⁡ p U ( p , q ) \max\limits_p U(p,q^*) = \min\limits_q \max\limits_p U(p,q) pmaxU(p,q)=qminpmaxU(p,q)

max ⁡ p min ⁡ q U ( p , q ) = min ⁡ q max ⁡ p U ( p , q ) \max\limits_p \min\limits_q U(p,q) = \min\limits_q \max\limits_p U(p,q) pmaxqminU(p,q)=qminpmaxU(p,q) ⟹ MNE

由于 max ⁡ p min ⁡ q U ( p , q ) = min ⁡ q max ⁡ p U ( p , q ) \max\limits_p \min\limits_q U(p,q) = \min\limits_q \max\limits_p U(p,q) pmaxqminU(p,q)=qminpmaxU(p,q)
因此 min ⁡ q U ( p ∗ , q ) = max ⁡ p U ( p , q ∗ ) \min\limits_q U(p^*,q) = \max\limits_p U(p,q^*) qminU(p,q)=pmaxU(p,q)

  • 由于 ∀ p ∈ Δ p \forall p \in \Delta_p pΔp, U ( p , q ∗ ) ⩽ max ⁡ p U ( p , q ∗ ) = min ⁡ q U ( p ∗ , q ) ⩽ U ( p ∗ , q ∗ ) U(p,q^*) \leqslant \max\limits_p U(p,q^*) = \min\limits_q U(p^*,q) \leqslant U(p^*,q^*) U(p,q)pmaxU(p,q)=qminU(p,q)U(p,q)
    因此 p ∗ p^* p q ∗ q^* q 的最优反应

  • 由于 ∀ q ∈ Δ q \forall q \in \Delta_q qΔq, U ( p ∗ , q ) ⩾ min ⁡ q U ( p ∗ , q ) = max ⁡ p U ( p , q ∗ ) ⩾ U ( p ∗ , q ∗ ) U(p^*,q) \geqslant \min\limits_q U(p^*,q) = \max\limits_p U(p,q^*) \geqslant U(p^*,q^*) U(p,q)qminU(p,q)=pmaxU(p,q)U(p,q)
    因此 q ∗ q^* q p ∗ p^* p 的最优反应

因此 ( p ∗ , q ∗ ) (p^*,q^*) (p,q) 构成纳什均衡.

max ⁡ p min ⁡ q U ( p , q ) = min ⁡ q max ⁡ p U ( p , q ) \max\limits_p \min\limits_q U(p,q) = \min\limits_q \max\limits_p U(p,q) pmaxqminU(p,q)=qminpmaxU(p,q) ⟸ MNE

由于 U ( p , q ) ⩽ max ⁡ p U ( p , q ) U(p,q) \leqslant \max\limits_p U(p,q) U(p,q)pmaxU(p,q)
所以 min ⁡ q U ( p , q ) ⩽ min ⁡ q max ⁡ p U ( p , q ) \min\limits_q U(p,q) \leqslant \min\limits_q \max\limits_p U(p,q) qminU(p,q)qminpmaxU(p,q)
进而 max ⁡ p min ⁡ q U ( p , q ) ⩽ min ⁡ q max ⁡ p U ( p , q ) \max\limits_p \min\limits_q U(p,q) \leqslant \min\limits_q \max\limits_p U(p,q) pmaxqminU(p,q)qminpmaxU(p,q)
亦即 min ⁡ q U ( p ∗ , q ) ⩽ max ⁡ p U ( p , q ∗ ) \min\limits_q U(p^*,q) \leqslant \max\limits_p U(p,q^*) qminU(p,q)pmaxU(p,q)

  • 由于 p ∗ p^* p q ∗ q^* q 的最优反应
    因此 ∀ p ∈ Δ p \forall p \in \Delta_p pΔp, U ( p , q ∗ ) ⩽ U ( p ∗ , q ∗ ) U(p,q^*) \leqslant U(p^*,q^*) U(p,q)U(p,q)

  • 由于 q ∗ q^* q p ∗ p^* p 的最优反应
    因此 ∀ q ∈ Δ q \forall q \in \Delta_q qΔq, U ( p ∗ , q ) ⩾ U ( p ∗ , q ∗ ) U(p^*,q) \geqslant U(p^*,q^*) U(p,q)U(p,q)

进而 ∀ p ∈ Δ p \forall p \in \Delta_p pΔp, ∀ q ∈ Δ q \forall q \in \Delta_q qΔq, U ( p ∗ , q ) ⩾ U ( p ∗ , q ∗ ) ⩾ U ( p , q ∗ ) U(p^*,q) \geqslant U(p^*,q^*) \geqslant U(p,q^*) U(p,q)U(p,q)U(p,q)
亦即 min ⁡ q U ( p ∗ , q ) ⩾ U ( p ∗ , q ∗ ) ⩾ max ⁡ p U ( p , q ∗ ) \min\limits_q U(p^*,q) \geqslant U(p^*,q^*) \geqslant \max\limits_p U(p,q^*) qminU(p,q)U(p,q)pmaxU(p,q)

进而 min ⁡ q U ( p ∗ , q ) ⩾ U ( p ∗ , q ∗ ) = max ⁡ p U ( p , q ∗ ) \min\limits_q U(p^*,q) \geqslant U(p^*,q^*) = \max\limits_p U(p,q^*) qminU(p,q)U(p,q)=pmaxU(p,q)
进而 max ⁡ p min ⁡ q U ( p , q ) = min ⁡ q max ⁡ p U ( p , q ) \max\limits_p \min\limits_q U(p,q) = \min\limits_q \max\limits_p U(p,q) pmaxqminU(p,q)=qminpmaxU(p,q)


证明minimax定理概述

  • minimax定理的形式化

    Δ p = { p ∣ p ≽ 0 , p 1 T = 1 } \Delta_p = \{p \mid p \succcurlyeq 0, p1^T=1 \} Δp={ pp0,p1T=1}, Δ q = { q ∣ q ≽ 0 , q 1 T = 1 } \Delta_q = \{q \mid q \succcurlyeq 0, q1^T=1 \} Δq={ qq0,q1T=1}, Δ = Δ p × Δ q \Delta = \Delta_p \times \Delta_q Δ=Δp×Δq
    U : Δ → R U: \Delta \to \reals U:ΔR, U U U 连续, 对 p p p 凹, 对 q q q
    要求证明 max ⁡ p min ⁡ q U ( p , q ) = min ⁡ q max ⁡ p U ( p , q ) \max\limits_p \min\limits_q U(p,q) = \min\limits_q \max\limits_p U(p,q) pmax

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值