数据分析案例:超市数据管理驾舱
所需内容:
1、pandas数据清洗
2、pyecharts绘图工具
3、绘制可视化大屏
1.获取数据
代码如下实例:
# 读取数据
data = pd.read_excel('../data/超市数据.xlsx')
pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
2. 数据分析检查数据
data.info()
因为数据是比较完整的所以不需要进行数据清洗,就可以直接进行数据操作分析.
3.各地区销售汇总,并绘成柱状图
dq_hz = data.groupby(by='地区')['销售额'].sum()
# 将series转成datafrom
dq_hz = dq_hz.reset_index()
# 获取地区信息
X_data = dq_hz['地区']
X_data = X_data.values.tolist()
# 获取销售额
y_data = (dq_hz['销售额']/10000).map(lambda x:("%.2f")%x)
y_data = y_data.values.tolist()
# 实例化,增加x轴和y轴的数据
bar = Bar(init_opts=opts.InitOpts(chart_id='1', bg_color='#00589F'))
bar.add_xaxis(X_data)
bar.add_yaxis(series_name='',
y_axis=y_data, color='#5D9BCF')
# 控制柱头数字的显示位置
bar.set_series_opts(label_opts=opts.LabelOpts(position='top')) # 表头数据显示在右侧
# 增加标题 ----> 全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="各地区销售额汇总",
pos_left='center', pos_top='10',
title_textstyle_opts=opts.TextStyleOpts(color="#FFFFFF", font_size=16)),
xaxis_opts=opt