数据分析案例:超市数据分析

本文通过Python的pandas库进行数据清洗和分析,利用pyecharts工具绘制超市销售数据的可视化图表,包括各地区销售柱状图、产品销售额趋势、邮寄方式销售额对比、产品分类分布等,最后将所有图表整合成一个大图文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据分析案例:超市数据管理驾舱

所需内容:

1、pandas数据清洗
2、pyecharts绘图工具
3、绘制可视化大屏

1.获取数据

代码如下实例:

# 读取数据
data = pd.read_excel('../data/超市数据.xlsx')

pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

2. 数据分析检查数据

data.info()

因为数据是比较完整的所以不需要进行数据清洗,就可以直接进行数据操作分析.

3.各地区销售汇总,并绘成柱状图

dq_hz = data.groupby(by='地区')['销售额'].sum()
# 将series转成datafrom
dq_hz = dq_hz.reset_index()

# 获取地区信息
X_data = dq_hz['地区']
X_data = X_data.values.tolist()
# 获取销售额
y_data = (dq_hz['销售额']/10000).map(lambda x:("%.2f")%x)
y_data = y_data.values.tolist()
# 实例化,增加x轴和y轴的数据
bar = Bar(init_opts=opts.InitOpts(chart_id='1', bg_color='#00589F'))
bar.add_xaxis(X_data)
bar.add_yaxis(series_name='',
              y_axis=y_data, color='#5D9BCF')

# 控制柱头数字的显示位置
bar.set_series_opts(label_opts=opts.LabelOpts(position='top'))  # 表头数据显示在右侧

# 增加标题 ---->  全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="各地区销售额汇总",
                                              pos_left='center', pos_top='10',
                                              title_textstyle_opts=opts.TextStyleOpts(color="#FFFFFF", font_size=16)),
                    xaxis_opts=opt
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值