- 博客(8)
- 收藏
- 关注
原创 微信聊天记录数据分析
目录一、项目背景二、数据准备三、数据预处理及描述性统计四、数据分析1.聊天时间分布图2.高频词汇统计3.词云图展示五、其它探索性分析一、项目背景2021年2月20日我和我女朋友第一次见面,之后开启了我们两个人的故事,时隔一年我想将我们的聊天记录提取出来进行简单的数据分析一下。微信里面有2021年4月20日至2022年2月20日的聊天记录,一共十个月的数据。二、数据准备在网上有许多文章关于可以找到关于...
2022-02-20 21:42:38 14925 12
原创 共享单车数据分析
目录1.加载包和读取数据2.数据预处理3.生成假设4.假设检验5.决策树6.开始建模kaggle网站(Bike Sharing Demand | Kaggle)提供了某城市的共享单车2011年到2012年的数据集。该数据集包括了租车日期,租车季节,租车天气,租车气温,租车空气湿度等数据。本次将使用r对这一数据集进行探索性分析,我觉得这个目标就是——季节、天气、温度等这些因素是如何影响共享单车使用率的?。1.加载包和读取数据首先加载包:libr.
2021-09-18 11:30:05 10111 3
原创 Tableau超市数据分析报告
目录一、数据集描述二、数据概述2.1 理解数据2.2 提出问题2.3 分析思路三、分维度绘制仪表板3.1 创建客户分析可视化图表3.2 创建配送分析可视化图表3.3 创建销售分析可视化图表3.4 创建利润分析可视化图表3.5 创建产品分析可视化图表四、创建超市分析报告故事五、炫彩图形5.1 热图5.2 预测图5.3 瀑布图5.4 帕累托图5.5 其它一、数据集描述此次使用的“示例超市”为某超市品牌在中国范围内...
2021-09-03 21:31:04 11207 2
原创 基于MySQL的电商零售订单数据分析
1.提出问题1.1.电子零售商面对的挑战和问题近年来全球网民渗透率逐步提高,欧美地区网民渗透率远高于亚非地区。得益于互联网及全球网民规模的不断发展,全球零售总体规模保持增长,2019年全球零售总额为25万亿美元,其中网络零售额为3.5万亿美元,占比14%。在2020年发布的《世界电子商务报告》中,全球有7个国家网购用户数量过亿,从市场规模来看,中国是全球最大、最活跃的互联网互用市场,英国是欧洲最大的电子商务市场,互联网普及达93%,而拉丁美洲是最受欢迎的电子商务新兴市场。全球使用移动端进行消费的
2021-06-03 11:37:01 1930 1
原创 客户购买意愿预测
1.提出问题本项目是与葡萄牙银行机构的营销活动相关。这些营销活动一般以电话为基础,银行的客服人员至少联系客户一次,以确认客户是否有意愿购买该银行的产品(定期存款)。因此本文的任务是基本类型为分类任务,即预测客户是否购买该银行的产品。2.理解数据数据来源:https://www.kesci.com/home/competition/5c234c6626ba91002bfdfdd3/content/1项目提供了2个数据集,分别为训练数据(train_set)、测试数据(test_set)
2021-05-31 11:31:31 5871 3
原创 零售商店订单数据分析
一、项目背景通过"扫描"零售商店电子销售点个别产品的条形码而获得的消费品销售的详细数据。这些数据提供了有关所售商品的数量、特征和价值以及价格的详细信息。二、数据来源https://www.kaggle.com/marian447/retail-store-sales-transactions三、提出问题消费情况分析及用户购买模式分析 RFM和CLV分析 不同类别商品关联规则挖掘四、理解数据Date:购买日期 Customer_ID:用户ID Transaction_ID:交
2021-05-30 10:46:28 2809
原创 租房订单数据分析
1.加载并清洗数据1.1.背景介绍自2008年以来,客人和房东利用Airbnb扩大了旅行的可能性,并提出了更独特、个性化的方式来体验世界。这个数据集描述了2019年纽约市的房源活动和指标。1.2.数据来源Kaggle项目:https://link.zhihu.com/?target=https%3A//www.kaggle.com/dgomonov/new-york-city-airbnb-open-data1.3.数据介绍该数据文件包括所有需要的信息,以了解有关主机、地理可用性、进
2021-05-29 20:25:36 899
原创 电商零售交易数据挖掘价值用户
提出问题 1.1.电子零售商面对的挑战和问题 1.2.本次分析的业务问题及适用指标 理解数据 2.1. 数据来源 2.2.本次分析选取的数据样本 2.3.字段含义 数据清洗 3.1.准备工作 3.2.选择子集并重命名列名 3.3.删除重复值 3.4.缺失值处理 3.5.一致化处理 3.6.异常值处理 运营指标统计分析 4.1.月追踪:月销售量、月销售额、月均销售额 4.2.周追踪:周销售量、周销售额、周均销售额 4.3..
2021-05-29 17:45:24 3332 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人