局域网传输神器Snapdrop(电脑、手机均可)

本文介绍了Snapdrop,一款基于WebRTC的免费在线文件共享工具,能在同一局域网环境下,通过浏览器实现实时、P2P的文件传输,无需服务器存储,适用于电脑和手机。它简单易用,支持文字消息发送,且开源可供部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

局域网传输神器Snapdrop(电脑、手机均可)⌛

https://github.com/RobinLinus/snapdrop

Snapdrop是一款可以实现跨平台传递文件的工具,用户只要有浏览器就能进行使用。

SnapDrop只需要同时打开一个网页,就能传输文件了,不会在任何服务器端保存数据, P2P 传输, 基于浏览器的 WebRTC 接口, 手机端与电脑端均可使用.

SnapDrop 同时是一款开源的在线服务,有需要的同学可以去SnapDrop的Github中下载,然后自己去部署.

Snapdrop:浏览器中的本地文件共享。灵感来自Apple的AirDrop

Snapdrop is free.
Snapdrop是免费的。

技术原理

SnapDrop是由以下技术构建的:

  • Vanilla HTML5 / ES6 / CSS3 frontend
  • WebRTC / WebSockets
  • NodeJS backend
  • Progressive Web App

使用说明

1、用户传递文件时,只要保证设备处在同一个区域网下,并同时打开snapdrop.net就可以传输了,非常的方便。

2、右键点击图标,还能召出文字框发送消息。

Snapdrop需要所有设备需要处于同一局域网下。

参考

https://github.com/RobinLinus/snapdrop/blob/master/docs/faq.md

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西京刀客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值