CodeForces 1307D BFS最短路 思维

本文介绍了一种解决无向图中最短路径问题的策略,当边权均为1且存在特殊节点时,如何通过增加特定边来最大化从1到n的最短路径。通过使用BFS算法计算每个节点到1和n的最短距离,并利用排序和一维枚举优化,实现了低于n^2的时间复杂度解决方案。最后,给出了AC代码实现。
摘要由CSDN通过智能技术生成

原题链接

题意

  • 给出一个简单无向图,边权全部为1,同时给我们k个特殊点,要求我们从这k个特殊点中选出两个来连一条边权为1的边。同时,我们的决策要保证1~n的最短路程最大,求最终这个最短路长度。

思路

  • 首先因为边权都为1,所以我们可以BFS来求出最短路。而且可以顺带求出所有点的d1(1到i的路程)和d2(i到n的路程)

  • 然后考虑如果连接i,j点,那么最终结果就是 m i n ( d 1 [ i ] + d 2 [ j ] + 1 , d 1 [ n ] ) min(d1[i] + d2[j] + 1, d1[n]) min(d1[i]+d2[j]+1,d1[n]), 不过要注意的是,这里必须有 d 1 [ i ] − d 2 [ i ] ≤ d 1 [ j ] − d 2 [ j ] d1[i] - d2[i] \le d1[j] - d2[j] d1[i]d2[i]d1[j]d2[j],否则结果不符合最短路的定义。

  • 因为n很大,所以我们需要一个低于n^2时间复杂度的算法,那么首先我们要将二维枚举优化为一维。这里可以看到

d 1 [ i ] + d 2 [ j ] ≤ d 1 [ j ] + d 2 [ i ] d1[i] + d2[j] \le d1[j] + d2[i] d1[i]+d2[j]d1[j]+d2[i]

可以化为

d 1 [ i ] − d 2 [ i ] ≤ d 1 [ j ] − d 2 [ j ] d1[i] - d2[i] \le d1[j] - d2[j] d1[i]d2[i]d1[j]d2[j]

  • 那么我们可以按照这个变形后的式子来对点进行排序。然后可知,后面的点的d2总是可以和前面的点的d1配对,所以我们从前往后扫描,同时用同一个变量来维护d1的最大值即可得到答案。

AC代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

const int N = 200000;

int n, k, m;
int fir[N + 5], nex[N * 2 + 5], vv[N * 2 + 5];
bool fl[N + 5];
struct ab
{
	int v[2];
	int l;
	bool operator < (const struct ab& c) const
	{
		return v[0] - v[1] < c.v[0] - c.v[1];
	}
} dis[N + 5];
int ff[N + 5];

void bfs(int s, int l)
{
	queue<int> qq;
	qq.push(s);
	dis[s].v[l] = 0;
	while (!qq.empty())
	{
		int cc = qq.front();
		qq.pop();
		for (int i = fir[cc]; i; i = nex[i])
		{
			if (dis[vv[i]].v[l] == -1)
			{
				dis[vv[i]].v[l] = dis[cc].v[l] + 1;
				qq.push(vv[i]);
			}
		}
	}
}

int main()
{
	scanf("%d%d%d", &n, &m, &k);
	memset(dis, -1, sizeof(dis));
	for (int i = 1; i <= n; ++i)
	{
		dis[i].l = i;
		ff[i] = i;
	}
	for (int i = 1; i <= k; ++i)
	{
		int x;
		scanf("%d", &x);
		fl[x] = true;
	}
	for (int i = 1; i <= m; ++i)
	{
		scanf("%d%d", &vv[i + m], &vv[i]);
		nex[i] = fir[vv[i + m]];
		fir[vv[i + m]] = i;
		nex[i + m] = fir[vv[i]];
		fir[vv[i]] = i + m;
	}
	bfs(1, 0);
	bfs(n, 1);
	int cc = dis[n].v[0];
	sort(dis + 1, dis + 1 + n);
	int ans = 0;
	int l1 = 1;
	while (!fl[dis[l1].l])
	{
		++l1;
	}
	int mx = dis[l1].v[0];
	for (int i = l1 + 1; i <= n; ++i)
	{
		if (fl[dis[i].l])
		{
			ans = max(mx + dis[i].v[1], ans);
			mx = max(dis[i].v[0], mx);
		}
	}
	printf("%d\n", min(ans + 1, cc));
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值