试题 算法训练 最大的算式 Java

import java.util.Scanner;

/**
 * 试题 算法训练 最大的算式:
 *    题目很简单,给出N个数字,不改变它们的相对位置,
 *    在中间加入K个乘号和N-K-1个加号,(括号随便加)使最终结果尽量大。
 *    因为乘号和加号一共就是N-1个了,所以恰好每两个相邻数字之间都有一个符号。
 * 例如:
 *   N=5,K=2,5个数字分别为1、2、3、4、5,可以加成:
 *   1*2*(3+4+5)=24
 *   1*(2+3)*(4+5)=45
 *   (1*2+3)*(4+5)=45
 * 输入格式:
 *   输入文件共有二行,第一行为两个有空格隔开的整数,
 *    表示N和K,其中(2<=N<=15, 0<=K<=N-1)。第二行为 N个用空格隔开的数字(每个数字在0到9之间)。
 * 输出格式:
 *   输出文件仅一行包含一个整数,表示要求的最大的结果
 * 样例输入:
 *     5 2
 *     1 2 3 4 5
 * 样例输出:
 *     120
 */
public class Main {
    static long[][] dp = new long[20][20];//dp[i][j] 表示前i个数[包括i]有j个乘号时的最大乘积
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        int N = sc.nextInt();
        int K = sc.nextInt();
        int[] arr = new int[N+1];
        for(int i = 0;i<N;i++){
            arr[i+1] = sc.nextInt();
        }
        int[] sum = new int[N+1];
        for(int i = 0;i<N;i++){
            sum[i+1] = sum[i] + arr[i+1];//前缀和
        }
        for(int i = 1;i <= N;i++){
            dp[i][0] = sum[i];//dp初始化,0个乘号代表有N-1个加号,所以dp[i][0]为前缀和
        }
        for(int i = 2;i <= N;i++){
            for(int j = 1;j <= i-1 && j <= K;j++){
                for(int p = 2;p <= i;p++){
                    dp[i][j] = Math.max(dp[i][j],dp[p-1][j-1]*(sum[i]-sum[p-1]));
                }
            }
        }
        System.out.println(dp[N][K]);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uranus^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值