step 1.
选择合适的服务器后,选择服务器的镜像(3选1):
(1)选择miniconda,选择合适的python版本和cuda版本
(2)社区镜像
(3)选择自己创建过的镜像
step 2.
在autoDL的控制台中的容器实例中找到自己购买的实例
注:无卡模式开机的费用低,适用于上传数据或其它无需使用GPU的活动
step 3.
上传你的代码和数据集,亦或其它文件。这里需要使用Xftp 7,可到Xftp官网下载。
打开Xftp,点击新建
在新建会话属性界面中,操作如下:
- 名称任意填写
- 主机填写登录指令中@后的内容
例如某登录指令为ssh -p 12345 root@region-55.seetacloud.com,那么主机应填写region-55.seetacloud.com
- 协议默认SFTP
- 端口号填写登录指令中的5位数字
例如某登录指令为ssh -p 12345 root@region-55.seetacloud.com,那么端口号应填写12345
- 方法选择Password
- 用户名填写root
- 密码为你购买的实例所提供的密码
- 填写完后点击连接,随后上传你的文件即可
step 4.
打开pycharm,在新建好项目后,在设置中找到python解释器,点击添加
在添加python解释器界面中,选择SSH解释器:
- 主机填写登录指令中@后的内容
- 用户名填写root
- 端口填写登录指令中的5位数字
填写后点击下一个,在这个界面中填写密码,填写后点击下一个。
如果我们选择的是miniconda3环境,解释器要填写/root/miniconda3/bin/python。
同步文件夹中的本地路径为项目所在路径,系统已自动填写完毕。
同步文件夹中的远程路径建议填写/root/autodl-tmp/project/自己起的名字,示例中填写了project01。
勾选自动上传项目文件到服务器,其目的是在pycharm中修改过的代码,会自动上传到服务器。
点击完成后配置结束。
在工具中点击启动SSH会话,会弹出选择要连接的主机,点击前缀为Remote Python的那个主机。
接连后的界面如下
step 5.
新建和配置conda环境,在连接界面中输入如下内容
$ conda create -n 你自己起的环境的名字 python=3.8
$ conda init bash && source /root/.bashrc
$ conda activate 你自己起的环境的名字
输入
nvcc -V
查看你的cuda版本,或到容器实例中查看
进入Pytorch官网,下滑找到Previous versions of Pytorch,ctrl+f搜索你的cuda版本号,找到对应的下载命令,在连接界面中下载即可。
创建好环境后,根据需要pip install安装你所用到的各种包。
step 6.
- 激活环境
conda activate 你自己起的环境的名字
- 进入要运行的代码的所在根目录
cd autodl-tmp/xxx/xxx
- 运行代码
python xxx.py
注:如果想训练完立刻关机,可以使用如下命令:
python xxx.py && shutdown
将鼠标移至pycharm界面的左下角,点击远程主机,可弹出服务器的目录