Crystal system

In crystallography, the terms crystal system, crystal family, and lattice system each refer to one of several classes of space groups, lattices, point groups, or crystals. Informally, two crystals tend to be in the same crystal system if they have similar symmetries, though there are many exceptions to this.

Crystal systems, crystal families, and lattice systems are similar but slightly different, and there is widespread confusion between them: in particular the trigonal crystal system is often confused with the rhombohedral lattice system, and the term "crystal system" is sometimes used to mean "lattice system" or "crystal family".

Space groups and crystals are divided into 7 crystal systems according to their point groups, and into 7 lattice systems according to their Bravais lattices. Five of the crystal systems are essentially the same as five of the lattice systems, but the hexagonal and trigonal crystal systems differ from the hexagonal and rhombohedral lattice systems. The six crystal families are formed by combining the hexagonal and trigonal crystal systems into one hexagonal family, in order to eliminate this confusion.

Contents

[hide]

Overview

Hexagonal Hanksite crystal, with three-fold c-axis symmetry

A lattice system is a class of lattices with the same point group. In three dimensions there are seven lattice systems: triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal, and cubic. The lattice system of a crystal or space group is determined by its lattice but not always by its point group.

A crystal system is a class of point groups. Two point groups are placed in the same crystal system if the sets of possible lattice systems of their space groups are the same. For many point groups there is only one possible lattice system, and in these cases the crystal system corresponds to a lattice system and is given the same name. However, for the five point groups in the trigonal crystal class there are two possible lattice systems for their point groups: rhombohedral or hexagonal. In three dimensions there are seven crystal systems: triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, and cubic. The crystal system of a crystal or space group is determined by its point group but not always by its lattice.

A crystal family also consists of point groups and is formed by combining crystal systems whenever two crystal systems have space groups with the same lattice. In three dimensions a crystal family is almost the same as a crystal system (or lattice system), except that the hexagonal and trigonal crystal systems are combined into one hexagonal family. In three dimensions there are six crystal families: triclinic, monoclinic, orthorhombic, tetragonal, hexagonal, and cubic. The crystal family of a crystal or space group is determined by either its point group or its lattice, and crystal families are the smallest collections of point groups with this property.

In dimensions less than three there is no essential difference between crystal systems, crystal families, and lattice systems. There are 1 in dimension 0, 1 in dimension 1, and 4 in dimension 2, called oblique, rectangular, square, and hexagonal.

The relation between three-dimensional crystal families, crystal systems, and lattice systems is shown in the following table:

Crystal familyCrystal systemRequired symmetries of point grouppoint groupsspace groupsbravais latticesLattice system
TriclinicNone221Triclinic
Monoclinic1 twofold axis of rotation or 1 mirror plane3132Monoclinic
Orthorhombic3 twofold axes of rotation or 1 twofold axis of rotation and two mirror planes.3594Orthorhombic
Tetragonal1 fourfold axis of rotation7682Tetragonal
HexagonalTrigonal1 threefold axis of rotation571Rhombohedral
181Hexagonal
Hexagonal1 sixfold axis of rotation727
Cubic4 threefold axes of rotation5363Cubic
Total: 67
32230147

Crystal systems

The distribution of the 32 point groups into the 7 crystal systems is given in the following table.

crystal familycrystal systempoint group / crystal classSch?nfliesHermann-MauguinorbifoldTypeorderstructure
triclinictriclinic-pedialC1111enantiomorphic polar1trivial
triclinic-pinacoidalCi11xcentrosymmetric2cyclic
monoclinicmonoclinic-sphenoidalC2222enantiomorphic polar2cyclic
monoclinic-domaticCsm1*polar2cyclic
monoclinic-prismaticC2h2/m2*centrosymmetric42×cyclic
orthorhombicorthorhombic-sphenoidalD2222222enantiomorphic4dihedral
orthorhombic-pyramidalC2vmm2*22polar4dihedral
orthorhombic-bipyramidalD2hmmm*222centrosymmetric82×dihedral
tetragonaltetragonal-pyramidalC4444enantiomorphic polar4Cyclic
tetragonal-disphenoidalS442x 4cyclic
tetragonal-dipyramidalC4h4/m4*centrosymmetric82×cyclic
tetragonal-trapezoidalD4422422enantiomorphic8dihedral
ditetragonal-pyramidalC4v4mm*44polar8dihedral
tetragonal-scalenoidalD2d42m or 4m22*2 8dihedral
ditetragonal-dipyramidalD4h4/mmm*422centrosymmetric162×dihedral
hexagonaltrigonaltrigonal-pyramidalC3333enantiomorphic polar3cyclic
rhombohedralS6 (C3i)33xcentrosymmetric6cyclic
trigonal-trapezoidalD332 or 321 or 312322enantiomorphic6dihedral
ditrigonal-pyramidalC3v3m or 3m1 or 31m*33polar6dihedral
ditrigonal-scalahedralD3d3m or 3m1 or 31m2*3centrosymmetric12dihedral
hexagonalhexagonal-pyramidalC6666enantiomorphic polar6cyclic
trigonal-dipyramidalC3h63* 6cyclic
hexagonal-dipyramidalC6h6/m6*centrosymmetric122×cyclic
hexagonal-trapezoidalD6622622enantiomorphic12dihedral
dihexagonal-pyramidalC6v6mm*66polar12dihedral
ditrigonal-dipyramidalD3h6m2 or 62m*322 12dihedral
dihexagonal-dipyramidalD6h6/mmm*622centrosymmetric242×dihedral
cubictetrahedralT23332enantiomorphic12Alternating
diploidalThm33*2centrosymmetric242×alternating
gyroidalO432432enantiomorphic24symmetric
tetrahedralTd43m*332 24symmetric
hexoctahedralOhm3m*432centrosymmetric482×symmetric

The crystal structures of biological molecules (such as protein structures) can only occur in the 11 enantiomorphic point groups, as biological molecules are invariably chiral. The protein assemblies themselves may have symmetries other than those given above, because they are not intrinsically restricted by the Crystallographic restriction theorem. For example the Rad52 DNA binding protein has an 11-fold rotational symmetry (in human), however, it must form crystals in one of the 11 enantiomorphic point groups given above.

Lattice systems

The distribution of the 14 Bravais lattice types into 7 lattice systems is given in the following table.

The 7 lattice systemsThe 14 Bravais Lattices
triclinic (parallelepiped)Triclinic
monoclinic (right prism with parallelogram base; here seen from above)simplebase-centered
Monoclinic, simpleMonoclinic, centered
orthorhombic (cuboid)simplebase-centeredbody-centeredface-centered
Orthohombic, simpleOrthohombic, base-centeredOrthohombic, body-centeredOrthohombic, face-centered
tetragonal (square cuboid)simplebody-centered
Tetragonal, simpleTetragonal, body-centered
rhombohedral
(trigonal trapezohedron)
Rhombohedral
hexagonal (centered regular hexagon)Hexagonal
cubic
(isometric; cube)
simplebody-centeredface-centered
Cubic, simpleCubic, body-centeredCubic, face-centered


In geometry and crystallography, a Bravais lattice is a category of symmetry groups for translational symmetry in three directions, or correspondingly, a category of translation lattices.

Such symmetry groups consist of translations by vectors of the form

\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3,

where n1, n2, and n3 are integers and a1, a2, and a3 are three non-coplanar vectors, called primitive vectors.

These lattices are classified by space group of the translation lattice itself; there are 14 Bravais lattices in three dimensions; each can apply in one lattice system only. They represent the maximum symmetry a structure with the translational symmetry concerned can have.

All crystalline materials must, by definition fit in one of these arrangements (not including quasicrystals).

For convenience a Bravais lattice is depicted by a unit cell which is a factor 1, 2, 3 or 4 larger than the primitive cell. Depending on the symmetry of a crystal or other pattern, the fundamental domain is again smaller, up to a factor 48.

The Bravais lattices were studied by Moritz Ludwig Frankenheim (1801-1869), in 1842, who found that there were 15 Bravais lattices. This was corrected to 14 by A. Bravais in 1848
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值