Python 与神奇的数学之斐波那契数列

本文介绍了斐波那契数列的概念,它源于1202年斐波那契的《算盘书》,并探讨了数列与黄金分割比的奇妙关系。斐波那契数列在现代科学多个领域都有应用,如物理学、化学和准晶体结构。此外,数列中的比值与黄金分割比0.618紧密相连,这一比例在自然界中广泛存在,如花瓣排列、生物结构等。文章还提供了斐波那契数列和螺旋的Python代码实现。
摘要由CSDN通过智能技术生成

        斐波那契数列(Fibonacci sequence),又称黄金分割数列,因意大利数学家莱昂纳多·斐波那契(Leonardo Fibonacci)以兔子繁殖为例而引入,故又称为“兔子数列”。

        其是指这样一个数列:1、1、2、3、5、8、13、21、34、……第三个数是前两个整数之和。在数学上,其被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)。

        1202年,斐波那契在其著作《算盘书》中提出了一个有趣的问题:假设一对刚出生的小兔一个月后就能长成大兔,再过一个月就能生下一对小兔,并且此后每个月都生一对小兔,一年内没有发生死亡,问:一对刚出生的兔子,一年内繁殖成多少对兔子?

         斐波那契提出该数列后,并没有进一步深入探讨,其后也鲜有人认真研究过它。直到十九世纪末和二十世纪,因此派生出广泛的应用,而突然活跃起来,并一度成为热门的研究课题。

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

香饽々

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值