python信息熵与信息增益 最近在读几篇华为杯的优秀论文,都是关于数据预测相关的,准确来说是时间序列预测,在数据处理部分发现了一个有趣的内容“信息熵”,之前在周志华老师的西瓜书上决策树剪枝部分看到过,在数据降维的部分看到还是第一次,在另一篇文章中也用到了信息增益这个东西,两篇文章我都会放在参考中以便感兴趣的伙伴查看。
洛伦兹微分方程与混沌理论 这一段时间在看书中关于深度学习与神经网络的内容,其中有一节介绍神经网络用于预测洛伦兹微分方程的数值解,还提到了“吸引子”这一概念,当时也没太理解是什么,下午搜集了一本书上关于混沌理论的介绍——《混沌的本质》。这本书是当代世界知名的动力气象学家、混沌理论的少有几位开创者之一E.N.洛伦兹教授在近期为总结其开创及推动混沌科学发展过程而写的一本力作。全书共分五章,全面介绍了混沌理论的基本概念发展历程和前景展望,既是一本很有分量的学术专著,又是一本科学散文集,哲理、文学与科学融为一体,读来引人入胜。
吉洪诺夫正则化随笔 前几天在回顾压缩感知中的特征选择与LASSO回归发现了这个Tikhonov regularization,查了一下叫个如题的名字。先来浅说一下正则化这玩意:正则化(Regularization)是一种用来防止模型过拟合(Overfitting)的技术。过拟合指的是模型在训练数据上表现得过于完美,但是当遇到新的、未见过的数据时,模型的表现却大幅下降,即模型的泛化能力较差。这通常发生在模型过于复杂,以至于它开始捕捉训练数据中的噪声和随机波动,而不是数据背后的真实规律。
图像处理中的二维傅里叶变换 图像的频谱是图像灰度变化强度的指标,是灰度在平面空间中的梯度。此外,在图像处理中,还经常对DFT的结果进行中心化处理(即将频率域的原点移动到矩阵的中心),以便于观察和分析频谱的对称性。下面说一下具体意义:傅里叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数。图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。:输入图像的灰度矩阵,即空间域中的图像,也就是灰度值。
贝叶斯分类器 最近几天晃晃荡荡的,时不时来图书馆学习周志华老师的机器学习西瓜书,看到第七章贝叶斯分类器感觉很有意思,在此站搜索了一下发现了几篇优秀博文,忍不住说一句:写的真TM好哈哈哈,我想总结总结来加深这一部分的学习。文中的一些解释都基于西瓜数据集。后续的内容还有半朴素贝叶斯分类器、ADOE、贝叶斯网等内容,也是对朴素贝叶斯分类器的进一步优化,在参考5中也有说明朴素贝叶斯分类器的优缺点,使用步骤等等,非常不错,这篇就写到这里吧。
奇异值分解(Singular Value Decomposition SVD)浅说 奇异值分解(SVD)是计算时代最为重耍的矩阵分解方式之、提供了一种数值稳定的矩阵分解结果,可用于多种应用目的并保证矩阵分解的存在性。
浅谈稀疏性与压缩感知(三) 前面两部分对稀疏性和压缩感知的简单理论进行了说明,同时对涉及的一些统计相关的给出了例,这一部分打算对稀疏性和压缩感知的发展历程杂谈,作为刚入门的学生,大部分都是查阅文献而来,我也会在结尾给出,在搜集时我也发现众多的工程应用和算法更新其中最底层的理论并没有改变。
浅谈稀疏性与压缩感知(一) 由于学习需要对这一部分的内容进行了简单了解,在社区里也有很多人写了相关的内容,我想记录自己在学习过程中的收获或者说问题,计划来写这篇博客,打算通过三部分来结束稀疏性和压缩感知的内容,参考的书目为数据驱动的科学和工程,当然B站上提供了这本书的讲解,链接如下数据驱动的科学和工程,在评论区中给出了此书的PDF,书中的代码链接如下代码,当然我也会在文中给出并且适当注释,文中就用Python来说明。
机器学习中关于随机森林和XGBoost算法的特征选择 (一) 近年来机器学习在数学建模竞赛和大数据竞赛中的应用越来越广泛,本文是基于2023年mothor cup 大数据竞赛B题第一问中特征选择,参考历年优秀论文和数学建模清风老师的内容,结合自己的实际想法而作。希望以上内容能对涉及有关内容的友友们有所帮助,同时也希望基础不太好或者初学者更多地接触Python,当然也推荐购买数学建模清风老师的课程,涉及到SPSS、STATA、MATLAB、EXCEL、画图软件等等。
pta-python-游客检票 - 实验3 简单的计算及输入输出 假设张家界景区的游客抵达检票口的速度是恒定的。某国庆长假日清晨景区开门时检票口已积聚了一定数量的游客,且随时间流逝,不断有新的游客抵达。如果打开8个检票口,m分钟刚好可以完成全部游客的检票放行;如果使用6个检票口,则需要n (n>m)分钟才能完成。请编程计算:如果使用10个检票口,需要多少时间才能将景区入口的待检票人数清零?【分析】这是小学奥数中著名的“牛吃草”问题。现假设每个检票口每分钟可以完成1份游客的检票放行任务。设景区开门时积聚的游客数量为x份,设每分钟有y份游客抵达检票口。然后列出方程
python--求最大和子列表 本题要求实现一个函数msslst(),带一个整数列表作为输入参数。要求函数计算并返回输入列表中的最大和子列表之和。最大和子列表是输入列表的子列表(切片),其各项之和最大。所有列表项都为负数,则最大和子列表为空子列表,空子列表的和定义为0。函数接口定义:msslst(lst) lst为传入的整数列表。裁判测试程序样例: # 请在这里填写答案 def main(): s = input() items = s.split() lst = [eval(x
python--求多项式的值 系数为a0,a1,a2,a3,⋯an的n次多项式是如下的一个函数:p(x)=a0+a1x+a2x2+a3x3,⋯an∗xn函数可以针对不同的x求值,例如,如果p(x)=1+2x+x2,则p(2)=1+2∗2+22=9。如果p(x)=1+x2+x4,则 p(2) = 21 ,p(3) = 91 。编写一个函数poly(),带两个输入参数:一个多项式p(x)的系数a0,a1,a2,a3,⋯an的列表和一个数值x,要求函数返回p(x),即多项式对x的求值结果。
python-列表去重 输入一个列表,去掉列表中重复的数字,按原来次序输出!输入格式:在一行中输入列表输出格式:在一行中输出不重复列表元素样例">样例">样例">样例">样例">样例">样例">样例">样例">输入样例:在这里给出一组输入。例如:[4,7,5,6,8,6,9,5] 输出样例:在这里给出相应的输出。例如:4 7 5 6 8 9针对这个问题首先想到用集合去重的方法解决更简单,社区内也有实例供大家参考,使用时最好在i
python-利用函数判断五位以内的对称素数 判断一个数是否为对称且不大于五位数的素数。要求判断对称和判断素数各写一个函数。输入格式:测试数据有多组,处理到文件尾。每组测试输入一个正整数n(0 < n <232)。输出格式:对于每组测试,若n是不大于五位数的对称素数,则输出“Yes”,否则输出“No”。每个判断结果单独占一行。注意:引号不必输出。输入样例:11101272335332147483647输出样例:YesYesNoYesNodef prime(m): flag ...
python -单词首字母大写 输入一个英文句子,要求将每个单词的首字母改成大写字母。输入格式:测试数据有多组,处理到文件尾。每组测试输入一行,包含一个长度不超过100的英文句子(仅包含大小写英文字母和空格),单词之间以一个空格间隔。输出格式:对于每组测试,输出按照要求改写后的英文句子。输入样例:I like acmi want to get accepted输出样例:I Like AcmI Want To Get Acceptedwhile True: try: lp...
Python-sdut-使用函数求区域内的素数之和 设计函数,求指定范围内的素数之和。函数1:prime(p), 用户传入参数p,若它为素数时返回True,否则返回False.函数2:PrimeSum(m,n),返回区间[m, n]内所有素数的和(其 中,1<=m<n)。函数接口定义:prime(p),返回True表示p是素数,返回False表示p不是素数;PrimeSum(m,n),函数返回素数之和。在这里解释接口参数。例如:其中N和D都是用户传入的参数。N的值不超过int的范围;D是[0, 9]区间内...
python-制作函数 偶数是两个素数的和 编写函数,接收一个正偶数为参数,输出两个素数,并且这两个素数之和等于原来的正偶数。如果存在多组符合条件的素数,则全部输出。函数接口定义:在这里描述函数接口。例如: def evenprimesum( n ): 在这里解释接口参数。n 为传递的整数,不一它是偶数,也不一定是大于0的数据。函数将所有是偶数的素数输出,输出格式为:素数 + 素数 = 偶数,数据之间分隔符为一个空格裁判测试程序样例:在这里给出函数被调用进行测试的例子。例如:/* 请在这里填写答案 */n = in
python-验证哥德巴赫猜想 - 实验7 简单的循环程序 数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。请设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。输入格式:在一行中给出一个(2,2 000 000 000]范围内的偶数N。输出格式:在一行中按照格式“N = p + q”输出N的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。输入样例:18输出样例:..