动态规划——01背包问题

这个问题有很多变种如下:

1、0/1背包最值问题
2、0/1背包存在问题
3、0/1背包组合问题

一,最值问题的递推公式是这样的

for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    }
}

二,存在问题

// 开始 01背包
for(int i = 0; i < nums.size(); i++) {
    for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
        dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
    }
}

三,组合问题

  for (int i = 0; i < nums.size(); i++) {
            for (int j = bagSize; j >= nums[i]; j--) {
                dp[j] += dp[j - nums[i]];
            }
        }

我们可以很容易看到他们的遍历方法很相似,几乎快一摸一样。

dp递推的公式我们可以通过找规律来找出来,但一定要弄清楚遍历的过程是怎么样的。

然后我总结了一下01背包问题的模板:

1,初始化数组

2,判断是否需要求和

3,双重循环遍历,通过递推公式得出最后结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值