动态规划——打家劫舍Ⅲ

在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。

计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。

337.打家劫舍III

 这个题是一个很典型的树形dp。

要采用后序遍历,从底部逐步向上遍历,不了解的可以去看二叉树的三种不同遍历方法。

此题我们只需要值得,每一个房子只存在两种状态,偷or不偷

第一步——确定递归公式

可以这样理解

如果我偷这个点,那么和我相连的二叉树点只能选择不偷;

即如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; 

如果我不偷这个点,那么我可以选择偷左右的点;

即如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);

vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右

// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};

第二步——理解遍历顺序

以我题目中第一个例子来说,

括号中的内容意义是(不偷该点,偷该点)

第一步(0,3),是对于3这个房子选择偷和不偷的能获得的最大价值;

第二步(3,2),是对于2这个房子选择偷和不偷的能获得的最大价值;

后面几步都是这样,对于最后一步的(6,7)可能没理解,

这一步的6是选择不偷左边的点,不偷自己这个点,偷右边的点于是等于3+3=6;

下面是展示的代码:

class Solution {
public:
    int rob(TreeNode* root) {
        vector<int> result = robTree(root);
        return max(result[0], result[1]);
    }
    // 长度为2的数组,0:不偷,1:偷
    vector<int> robTree(TreeNode* cur) {
        if (cur == NULL) return vector<int>{0, 0};
        vector<int> left = robTree(cur->left);
        vector<int> right = robTree(cur->right);
        // 偷cur,那么就不能偷左右节点。
        int val1 = cur->val + left[0] + right[0];
        // 不偷cur,那么可以偷也可以不偷左右节点,则取较大的情况
        int val2 = max(left[0], left[1]) + max(right[0], right[1]);
        return {val2, val1};
    }
};

做这个题目的时候,我还没做二叉树那一张,很多代码都不同,所以在不懂这个题目时可以去看看二叉树的内容。

共勉。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值