旅游规划(树形DP)
求直径的题(大臣的旅费)
换根法: 就是把每个点都暂时当作根节点,分为上和下两个部分来看。
W 市的交通规划出现了重大问题,市政府下定决心在全市各大交通路口安排疏导员来疏导密集的车流。
但由于人员不足,W 市市长决定只在最需要安排人员的路口安排人员。
具体来说,W 市的交通网络十分简单,由 n 个交叉路口和 n−1 条街道构成,交叉路口路口编号依次为 0,1,…,n−1 。
任意一条街道连接两个交叉路口,且任意两个交叉路口间都存在一条路径互相连接。
经过长期调查,结果显示,如果一个交叉路口位于 W 市交通网最长路径上,那么这个路口必定拥挤不堪。
所谓最长路径,定义为某条路径 p=(v1,v2,…,vk),路径经过的路口各不相同,且城市中不存在长度大于 k 的路径(因此最长路径可能不唯一)。
因此 W 市市长想知道哪些路口位于城市交通网的最长路径上。
输入格式
第一行包含一个整数 n。
之后 n−1 行每行两个整数 u,v,表示编号为 u 和 v 的路口间存在着一条街道。
输出格式
输出包括若干行,每行包括一个整数——某个位于最长路径上的路口编号。
为了确保解唯一,请将所有最长路径上的路口编号按编号顺序由小到大依次输出。
数据范围
1≤n≤2×105
输入样例:
10
0 1
0 2
0 4
0 6
0 7
1 3
2 5
4 8
6 9
输出样例:
0
1
2
3
4
5
6
8
9
思路
左边的一次DP求区间的长度,右边一次DP求哪些点在直径上面(判断是不是等于直径的长度)
h 是邻接表的头节点
j
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 200010,M = N * 2; //无向图 ,所以这里的M = N * 2
int n;
int h[N],e[M],ne[M],idx;
//d1记录儿子节点的最大值
//d2 儿子节点的次大值
//up向上走的最大值
//p1 记录此时的最大值从哪个节点来的
int d1[N],d2[N],p1[N],up[N];
int maxd;
void add(int a,int b) //根据邻接表创立树
{
e[idx] = b,ne[idx] = h[a],h[a] = idx++;
}
void dfs_d(int u,int father) //向下遍历
{
for(int i = h[u];~i;i = ne[i]) //遍历所有的儿子节点
{
int j = e[i];
if(j != father)
{
dfs_d(j,u);
int distance = d1[j] + 1;
if(distance > d1[u])
{
d2[u] = d1[u],d1[u] = distance;
p1[u] = j;
}
else if(distance > d2[u]) d2[u] = distance;
}
}
maxd = max(maxd,d1[u] + d2[u]);
}
void dfs_u(int u,int father) //向上遍历
{
for(int i = h[u];~i;i = ne[i])
{
int j = e[i];
if(j != father)
{
up[j] = up[u] + 1;
if(p1[u] == j) up[j] = max(up[j],d2[u] + 1);
else up[j] = max(up[j],d1[u] + 1);
dfs_u(j,u);
}
}
}
int main()
{
scanf("%d",&n);
memset(h,-1,sizeof h);
int a,b;
for(int i = 0;i < n - 1;i++)
{
scanf("%d%d",&a,&b);
add(a,b),add(b,a);
}
dfs_d(0,-1);
dfs_u(0,-1);
for(int i = 0;i < n;i++)
{
int d[3] = {d1[i],d2[i],up[i]};
sort(d,d + 3);
if(d[1] + d[2] == maxd) printf("%d\n",i);
}
return 0;
}