复杂DP题——旅游规划

旅游规划(树形DP)

求直径的题(大臣的旅费)

换根法: 就是把每个点都暂时当作根节点,分为上和下两个部分来看。

W 市的交通规划出现了重大问题,市政府下定决心在全市各大交通路口安排疏导员来疏导密集的车流。

但由于人员不足,W 市市长决定只在最需要安排人员的路口安排人员。

具体来说,W 市的交通网络十分简单,由 n 个交叉路口和 n−1 条街道构成,交叉路口路口编号依次为 0,1,…,n−1 。

任意一条街道连接两个交叉路口,且任意两个交叉路口间都存在一条路径互相连接。

经过长期调查,结果显示,如果一个交叉路口位于 W 市交通网最长路径上,那么这个路口必定拥挤不堪。

所谓最长路径,定义为某条路径 p=(v1,v2,…,vk),路径经过的路口各不相同,且城市中不存在长度大于 k 的路径(因此最长路径可能不唯一)。

因此 W 市市长想知道哪些路口位于城市交通网的最长路径上。

输入格式

第一行包含一个整数 n。

之后 n−1 行每行两个整数 u,v,表示编号为 u 和 v 的路口间存在着一条街道。

输出格式

输出包括若干行,每行包括一个整数——某个位于最长路径上的路口编号。

为了确保解唯一,请将所有最长路径上的路口编号按编号顺序由小到大依次输出。

数据范围

1≤n≤2×105
输入样例:
10
0 1
0 2
0 4
0 6
0 7
1 3
2 5
4 8
6 9

输出样例:

0
1
2
3
4
5
6
8
9

思路

左边的一次DP求区间的长度,右边一次DP求哪些点在直径上面(判断是不是等于直径的长度)
h 是邻接表的头节点

j
在这里插入图片描述

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>

using namespace std;

const int N = 200010,M = N * 2; //无向图 ,所以这里的M = N * 2

int n;
int h[N],e[M],ne[M],idx;
//d1记录儿子节点的最大值
//d2 儿子节点的次大值
//up向上走的最大值
//p1  记录此时的最大值从哪个节点来的
int d1[N],d2[N],p1[N],up[N];  
int maxd;

void add(int a,int b)  //根据邻接表创立树
{
    e[idx] = b,ne[idx] = h[a],h[a] = idx++;
    
}


void dfs_d(int u,int father)  //向下遍历
{
    for(int i = h[u];~i;i = ne[i])  //遍历所有的儿子节点
    {
        int j = e[i];
        if(j != father)
        {
            dfs_d(j,u);
            int distance = d1[j] + 1;
            if(distance > d1[u])
            {
                d2[u] = d1[u],d1[u] = distance;
                p1[u] = j;
            }
            else if(distance > d2[u]) d2[u] = distance;
        }
    }
    
    maxd = max(maxd,d1[u] + d2[u]);
}

void dfs_u(int u,int father)  //向上遍历
{
    for(int i = h[u];~i;i = ne[i])
    {
        int j = e[i];
        if(j != father)
        {
            up[j] = up[u] + 1;
            if(p1[u] == j) up[j] = max(up[j],d2[u] + 1);
            else up[j] = max(up[j],d1[u]  + 1);
            dfs_u(j,u);
        }
    }
}

int main()
{
    scanf("%d",&n);
    memset(h,-1,sizeof h);
    int a,b;
    for(int i = 0;i < n - 1;i++)
    {
        scanf("%d%d",&a,&b);
        add(a,b),add(b,a);
    }
    
    dfs_d(0,-1);
    dfs_u(0,-1);
    
    for(int i = 0;i < n;i++)
    {
        int d[3] = {d1[i],d2[i],up[i]};
        sort(d,d + 3);
        if(d[1] + d[2] == maxd) printf("%d\n",i);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值