第五讲——动态规划

一、算法图解

1、背包问题

1.1 最近红红买了个新背包,但是这个新背包的容量只有4磅,装入什么可使背包中物品的价值最大

可选择的物品:

在这里插入图片描述
让我们浅浅地列个表格吧

  • 网格最初是空的,你将填充其中的每个单元格

  • 网格的各商品,各不同容量(1~4磅)的背包

  • 此时你很可能心存疑惑:原来的问题说的是4磅的背包,我们为何要考虑容量为1磅、2磅等的背包呢

  • 因为动态规划从小问题着手,逐步解决大问题。这里解决的子问题将帮助你解决大问题

  • 在每一可选择的商品都为当前行的商品以及之前各行的商品

在这里插入图片描述

在这里插入图片描述

公式(伪代码):

在这里插入图片描述

  • 你可以使用这个公式来计算每个单元格的价值,最终的网格将与前一个网格相同。
  • 现在你明白了为何要求解子问题吧?你可以合并两个子问题的解来得到更大问题的解

1.2 背包问题Q&A

1.2.1 再增加一件可选商品如何呢?

再增加一件iphone
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 不可能。每次迭代时,你存储的都是 当前的最大价值
  • 划重点:在每一可偷的商品都为当前行的商品以及之前各行的商品
  • 最后一行之前,没有偷到iphone,最大价值的物品中 还不包含iphone
    最大价值不可能比以前低!

在这里插入图片描述

1.2.2 行的排列顺序 发生变化时结果将如何

答案会随之变化吗?假设你按如下顺序填充各行:音响、笔记本电脑、吉他。网格将会是什么样的?
在这里插入图片描述
答案没有变化。也就是说,各行的排列顺序无关紧要

1.2.3 旅游行程最优化

最近红红放假了,他决定去欧洲旅游,但是假期只有两天,没法将所有景点去完,因此尽量选择评分最高的景点,请帮红红选出最优旅游行程

约束条件不是背包的容量,而是有限的时间;不是决定该装入哪些商品,而是决定该去游览哪些名胜在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.2.4 处理相互依赖的情况

上述旅游清单中添加几项

单独玩时:

在这里插入图片描述

  • 3个地方都玩需要的总时间为3.5天 这种有依赖捆绑关系的事件,无法用动态规划解决

仅当每个子问题都是离散的,即不依赖于其他子问题时,动态规划才管用

2、最长公共子串

2.1 找出单词hish和fish的最长公共子串
  • 红红想查单词fish,但不小心输入了hish。在你的字典中,根本就没有这样的单词,但有几个类似的单词。那他原本要输入的是fish还是vista呢?
  • 那么hish和fish都包含的最长子串是多少个字母?hish和vista呢?

在这里插入图片描述

每个单元格都是一个子问题的值

在这里插入图片描述

公式:

在这里插入图片描述

在这里插入图片描述

  • 对于前面的背包问题,最终答案总是在最后的单元格中。
  • 但对于最长公共子串问题,答案为网格中最大的数字——它可能并不位于最后的单元格中

我们回到最初的问题:哪个单词与hish更像?

hish和fish的最长公共子串包含三个字母,而hish和vista的最长公共子串包含两个字母
因此红红很可能原本要输入的是fish

3、最长公共子序列

3.1 假设红红不小心输入了fosh,他原本想输入的是fish还是fort呢?

  • 最长公共子串的长度相同,都包含两个字母!
  • 但fosh与fish更像,有3个公共字母,而fort 和forsh只要2个公共字母
    在这里插入图片描述

计算最长公共子序列的表格:

在这里插入图片描述

这个表格是什么意思?怎么列出来的嘞?

在这里插入图片描述

最终表格:

在这里插入图片描述

公式(伪代码):

在这里插入图片描述

二、题目/代码

1、背包问题

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi价值是 wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。 输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。 接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i
件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N, V≤1000, 0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

二维:

思路
1、f [ i ][ j ]:表示前i个物品,背包容量为j时的最优解
2、初始状态为f [ 0 ][ 0 ] = 0;
3、当背包容量装不下第i个物品时( j < v[ i ] )不选第i个物品,
代码:f [ i ][ j ] = f [ i - 1 ][ j ]
4、当背包可以装下第i个物品时,需要将两种情况取max来决定选不选第i个物品:
4.1 选:f [ i - 1 ][ j - v[ i ] ] + w [ i ]
4.2不选:f[ i - 1 ][ j ]
即:f [ i ][ j ] = max (f [ i - 1 ][ j ], f [ i - 1 ][ j- v[ i ] ] + w [ i ] );

公式:

if(j<v[i])
	f[i][j]=f[i-1][j];
else
	f[i][j]=max(f[i-1][j], f[i-1][j-v[i]] + w[i]);

AC代码:

#include<iostream>
using namespace std;
int n,m;
const int N=1010;
int v[N],w[N];
int f[N][N];
int main()
{
	cin>>n>>m;//物品数量、背包容积

	for(int i=1; i<=n; i++)
	{
		cin>>v[i]>>w[i];//物品的体积和价值
	}

	//f[0][0]=0;   //初始化为0

	for(int i=1; i<=n; i++) //物品数量
	{
		for(int j=1; j<=m; j++) //背包容量
		{
			if(j<v[i]) //第i个物品装不下
			{
				//第i个背包的容量为j,第i-1个背包的容量也为j
				f[i][j]=f[i-1][j];
			}
			else //第i个物品可以装下
			{
				//1、上一个单元格的值j
				//2、当前商品的价值(j-v[i])+剩余空间的价值w[i]
				//1、2、中取较大的一个,为当前第i个背包的总价值
				
				f[i][j]=max(f[i-1][j], f[i-1][j-v[i]] + w[i]);
				//不要忘记加 第i个物品的价值 w[i]
			}
		}
	}

	cout<<f[n][m]<<endl;
	return 0;
}

一维:

公式:

for( int j = m; j >= v; j-- )
f [ j ] = max ( f [ j ], f [ j - v ] + w );

AC代码

#include<iostream>
using namespace std;

const int N=1010;

int v,w;
int f[N];

int main()
{
   
	int n,m;//物品数量、背包容积 
	cin>>n>>m;
	for(int i=1;i<=n;i
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值