题目:
Write a function that takes an unsigned integer and returns the number of ’1' bits it has (also known as the Hamming weight). For example, the 32-bit integer ’11' has binary representation 00000000000000000000000000001011, so the function should return 3.
解答:
其实一开始看题我就懵比了。。。11变00000000000000000000000000001011?后来想清楚11是十进制的“十一”。。。
题意是统计一个数字二进制化之后的,1的个数。最直接的方法就是不断 mod 2 判断是不是 1 之类的。听说这样会超时……想想,二进制,是不是可以引入位运算(一般来说,位运算较于加减乘除之类的计算要快速很多,能用就多用)。
可以将原数不断右移,然后与1位与运算(&),判断最后一位是不是1,是就count++。知道原数变0之后停止。
但是有个问题,假如问题扩展到负数,怎么办?不断右移之后,符号位不变一直是1还不就是无限循环了么?这时候可以引入汉明重量,基于一种事实即 X 与 X-1 位与得到的最低位永远是 0。例如:
Expression | Value |
X | 0 1 0 0 0 1 0 0 0 1 0 0 0 0 |
X-1 | 0 1 0 0 0 1 0 0 0 0 1 1 1 1 |
X & (X-1) | 0 1 0 0 0 1 0 0 0 0 0 0 0 0 |
减 1 操作将最右边的符号从 0 变到 1,从 1 变到 0。这样操作之后的直接结果是,原数少了个1位。而且对于负数也同样有循环终点。
class Solution {
public:
int hammingWeight(uint32_t n) {
int count = 0;
while(n)
{
count++;
n = n&(n-1);
}
return count;
}
};
觉得我讲解的不够清楚的,可以看看:点击打开链接
另外留一个小问题:如何判断一个数是不是2的整数次幂?(提示:看到2,想到位运算!利用汉明重量)
题目:
Given an integer, write a function to determine if it is a power of two.
解答:
这道题原理不难。坑在需要排除负数,因为二的幂(int)类型只会是正数
class Solution {
public:
bool isPowerOfTwo(int n) {
if(n <= 0) return false;
if(n & (n-1)) return false;
else return true;
}
};