【区间dp】hdu 3506 monkey party 环形石子合并问题

题意:猴大王要介绍在座的每只小猴子互相认识。每次介绍小猴子AB,AB必须相邻,并且介绍A,B后,猴A认识的猴子都会认识猴B认识的猴子,同样猴B认识的猴子都会认识猴A认识的猴子。每只猴子都认识自己。介绍AB的时间成本为猴A认识的猴子权值总数+猴B认识的猴子权值总数。问最少需要多长时间才能使所有猴子相互认识。

思路:我算是知道我为什么做啥啥不会了,如果不是提前看到,我想不到这是石子合并的题型。。

每次只能合并相邻两堆石子,合并的代价是两堆石子数量之和,问最小代价是多少。

然后这道题是环形的,第n只猴子可以和第1只猴子一起介绍。处理方式是把1~n-1猴子复制一份到n后面。输出的时候枚举dp[s][s+n-1],找最小值

没有注意多组样例wa了三发_(:з」∠)_

复习我的最优矩阵链乘

区间dp入门

区间dp小结

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=2e3+10;
const int INF=0x3f3f3f3f;
int dp[N][N];
int pos[N][N];
int sum[N];
int a[N];
int main()
{
    int n;
    while(cin>>n)
    {
        memset(dp,INF,sizeof(dp));
        memset(sum,0,sizeof(sum));
        for(int i=1;i<=n;++i)
        {
            cin>>a[i];
            dp[i][i]=0;
            pos[i][i]=i;
            sum[i]=sum[i-1]+a[i];

        }
        for(int i=1;i<=n-1;++i)
        {
            a[n+i]=a[i];
            dp[n+i][n+i]=0;
            pos[n+i][n+i]=n+i;
            sum[n+i]=sum[n+i-1]+a[n+i];
        }
        for(int len=2;len<=n;++len) //注意区间长度最大就是n
        {
            for(int i=1;i+len-1<=2*n-1;++i)
            {
                int j=i+len-1;

                for(int k=pos[i][j-1];k<=pos[i+1][j];++k)
                {
                    int tmp=dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1];
                    if(dp[i][j]>tmp)
                    {
                        dp[i][j]=tmp;
                        pos[i][j]=k;
                    }
                }
            }
        }
        int ans=INF;
        for(int i=1;i<=n;++i)
        {
            ans=min(ans,dp[i][i+n-1]);
        }
        cout<<ans<<endl;

    }
     return 0;

}

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值