题意:猴大王要介绍在座的每只小猴子互相认识。每次介绍小猴子AB,AB必须相邻,并且介绍A,B后,猴A认识的猴子都会认识猴B认识的猴子,同样猴B认识的猴子都会认识猴A认识的猴子。每只猴子都认识自己。介绍AB的时间成本为猴A认识的猴子权值总数+猴B认识的猴子权值总数。问最少需要多长时间才能使所有猴子相互认识。
思路:我算是知道我为什么做啥啥不会了,如果不是提前看到,我想不到这是石子合并的题型。。
每次只能合并相邻两堆石子,合并的代价是两堆石子数量之和,问最小代价是多少。
然后这道题是环形的,第n只猴子可以和第1只猴子一起介绍。处理方式是把1~n-1猴子复制一份到n后面。输出的时候枚举dp[s][s+n-1],找最小值
没有注意多组样例wa了三发_(:з」∠)_
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=2e3+10;
const int INF=0x3f3f3f3f;
int dp[N][N];
int pos[N][N];
int sum[N];
int a[N];
int main()
{
int n;
while(cin>>n)
{
memset(dp,INF,sizeof(dp));
memset(sum,0,sizeof(sum));
for(int i=1;i<=n;++i)
{
cin>>a[i];
dp[i][i]=0;
pos[i][i]=i;
sum[i]=sum[i-1]+a[i];
}
for(int i=1;i<=n-1;++i)
{
a[n+i]=a[i];
dp[n+i][n+i]=0;
pos[n+i][n+i]=n+i;
sum[n+i]=sum[n+i-1]+a[n+i];
}
for(int len=2;len<=n;++len) //注意区间长度最大就是n
{
for(int i=1;i+len-1<=2*n-1;++i)
{
int j=i+len-1;
for(int k=pos[i][j-1];k<=pos[i+1][j];++k)
{
int tmp=dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1];
if(dp[i][j]>tmp)
{
dp[i][j]=tmp;
pos[i][j]=k;
}
}
}
}
int ans=INF;
for(int i=1;i<=n;++i)
{
ans=min(ans,dp[i][i+n-1]);
}
cout<<ans<<endl;
}
return 0;
}