贪心算法其实就是没有什么规律可言,所以大家了解贪心算法 就了解它没有规律的本质就够了。
不用花心思去研究其规律, 没有思路就立刻看题解。
基本贪心的题目 有两个极端,要不就是特简单,要不就是死活想不出来。
学完贪心之后再去看动态规划,就会了解贪心和动规的区别。
455.分发饼干
链接:代码随想录
思路:简单的给小饼干排序,给小朋友胃口排序,然后对于每块小饼干,如果小孩子吃了,下一次循环就看下一块小饼干和这个孩子之后的孩子。
class Solution { public: int findContentChildren(vector<int>& g, vector<int>& s) { int n=g.size();//n个孩子 int m=s.size();//m块小饼干 if(m==0) { return 0; } sort(s.begin(),s.end()); sort(g.begin(),g.end()); int j=0;//孩子序列的指针 int cnt=0; for(int i=0;i<m;i++)//饼干序列的指针 { if(j<n && s[i]>=g[j]) { cnt++; j++; } } return cnt; } };
376. 摆动序列
链接:代码随想录
个人觉得代码随想录的答案太不容易想了,容易出错。所以这里我想出来一种
class Solution { public: /*先把相差的数列求出来,得到差值序列,其中如果插值为0直接省略 */ int wiggleMaxLength(vector<int>& nums) { int n=nums.size(); if(n==1) { return 1; } vector<int>v;//差值数组 for(int i=1;i<n;i++) { int temp=nums[i]-nums[i-1]; if(temp<0) { v.push_back(-1); } else if(temp>0) { v.push_back(1); } else//是0的话无视,因为没有意义 { } } if(v.size()==0)//所有差值均为0 { return 1; } if(v.size()==1)//[1,2]这种情况 { return 2; } //比如1 1 -1 -1 实质上只有1 -1,所以这一步要做的是所有相同符号的合并 int cnt=0; for(int i=1;i<v.size();i++) { if(v[i]!=v[i-1])//出现波动 { cnt++; } } return cnt+2; } };
53. 最大子序和
链接:代码随想录
动态规划思路:
class Solution { public: //连续子数组,并不是子序列 /*想用动态规划做。dp[i-1]是以nums[i-1]为结尾的最大子数组和,dp[i]=max(dp[i-1],dp[i-1]+nums[i]) dp[i-1]<0,nums[i]>0, dp[i]=nums[i] dp[i-1]<0,nums[i]<0,dp[i]=nums[i] dp[i-1]>0,nums[i]>0,dp[i]=dp[i-1]+nums[i] dp[i-1]>0,nums[i]<0,dp[i]=dp[i-1]+nums[i] 总结:dp[i-1]<0,dp[i]=nums[i] dp[i-1]>0,dp[i]=dp[i-1]+nums[i] */ int maxSubArray(vector<int>& nums) { int n=nums.size(); if(n==1) { return nums[0]; } vector<int>dp(n,0); dp[0]=nums[0]; int maxx=nums[0]; for(int i=1;i<n;i++ ) { if(dp[i-1]<=0) { dp[i]=nums[i]; } else { dp[i]=dp[i-1]+nums[i]; } maxx=max(maxx,dp[i]); } return maxx; } };
贪心思路
从代码角度上来讲:遍历nums,从头开始用count累积,如果count一旦加上nums[i]变为负数,那么就应该从nums[i+1]开始从0累积count了,因为已经变为负数的count,只会拖累总和。(为什么不再用前面的?如若前面的已经是负数,则不如从头开始)
这个代码总是写不对,由于更新最大值的位置在最中间。
Solution { public: int maxSubArray(vector<int>& nums) { int result = INT32_MIN; int count = 0; for (int i = 0; i < nums.size(); i++) { count += nums[i]; if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置) result = count; } if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和 } return result; } };