习题4.3 是否二叉搜索树(25 分)
本题要求实现函数,判断给定二叉树是否二叉搜索树。
函数接口定义:
bool IsBST ( BinTree T );
其中BinTree
结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
函数IsBST
须判断给定的T
是否二叉搜索树,即满足如下定义的二叉树:
定义:一个二叉搜索树是一棵二叉树,它可以为空。如果不为空,它将满足以下性质:
- 非空左子树的所有键值小于其根结点的键值。
- 非空右子树的所有键值大于其根结点的键值。
- 左、右子树都是二叉搜索树。
如果T
是二叉搜索树,则函数返回true,否则返回false。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef enum { false, true } bool;
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
BinTree BuildTree(); /* 由裁判实现,细节不表 */
bool IsBST ( BinTree T );
int main()
{
BinTree T;
T = BuildTree();
if ( IsBST(T) ) printf("Yes\n");
else printf("No\n");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例1:如下图
输出样例1:
Yes
输入样例2:如下图
输出样例2:
No
作者: DS课程组
单位: 浙江大学
时间限制: 400ms
内存限制: 64MB
代码长度限制: 16KB
折腾了很久,写出如下代码。
bool IsBST ( BinTree T ){
if((!T)||(!T->Left)&&(!T->Right)) return true;
else if(!(IsBST(T->Left))&&(IsBST(T->Right))) return false;
else if(!(T->Left?T->Data>T->Left->Data:1)&&(T->Right?T->Data<T->Right->Data:1)) return false;
else {
BinTree TLeft, TRight;
if(T->Left) {
TLeft = T->Left;
while(TLeft->Right) TLeft = TLeft->Right;
}
if(T->Right){
TRight = T->Right;
while(TRight->Left) TRight= TRight->Left;
}
return (T->Left?(T->Data>TLeft->Data):1)&&(T->Right?(T->Data<TRight->Data):1);
}
}
需要注意的一些测试点:
空树是二叉搜索树;只有一个节点的树也是二叉搜索树;
左右子树至少有一个非空,先判定左右子树是否都为二叉搜索树(递归),如果该条件不满足肯定不是;
左右子树都是二叉搜索树。假如左子树或右子树为空,则该端不用考虑,逻辑为1即可;如果非空,找到左子树的最右节点和右子树最左节点。要求左子树最右节点数值<根节点数值<右子树最左节点数值。注意如果有一边的子树为空,就不能对T->Left或者T->赋值了,否则会段错误