机器学习技法
文章平均质量分 85
懒猫一只拉阿拉蕾
这个作者很懒,什么都没留下…
展开
-
机器学习技法-2-Dual Support Vector Machine
回顾上一节:更胖的分割线,更鲁棒,利用二次规划解决SVM问题SVM≡minb,w(maxall αn⩾0L(b,w,α))=minb,w(∞ if violate ;12wTw if feasible)SVM\equiv \min_{b,\mathbf{w}}\left ( \max_{all\ \alpha_{n}\geqslant 0}\mathcal{L}(b,\mathbf{w},\alp原创 2015-02-16 15:31:08 · 727 阅读 · 1 评论 -
机器学习技法-1-Linear Support Vector Machine
课程介绍,机器学习整体分为3章 - SVM:Support Vector Machine - AdaBoost:Adaptive Boosting - Deep Learning还没有上过机器学习基石,不管怎样一点一点看一点一点积累 为了让margin最大,需要选择各个exampe到Hyperplane最短的那个距离distance(x,b,w)=1∥w∥∣∣wTx+b∣∣\be原创 2015-02-16 01:16:03 · 766 阅读 · 2 评论 -
机器学习技法-3-Kernel Support Vector Machine
第一小节其实没啥,挺简单的,目的应该是简化运算,我的理解比较肤浅,但感觉就是简化运算了而已 zTz′=ϕ2(x)Tϕ2(x′)=1+xTx′+(xTx′)2\mathbf{z}^T\mathbf{z}'=\phi_2(\mathbf{x})^T\phi_2(\mathbf{x}')=1+\mathbf{x}^T\mathbf{x'}+(\mathbf{x}^T\mathbf{x'})^2 先原创 2015-02-26 10:55:10 · 851 阅读 · 2 评论 -
机器学习技法-4-Soft Margin Support Vector Machine
有时候,SVM可能分割的太过了,黑即是黑,白即是白,其实这样“刚正无私”overfit也不好,所以就需要“中庸之道”,要允许有部分的误差或噪声,这就是为什么要有Soft Margin~还是ppt上的图解释的好 犯错要越少越好,这就是pocket,这是最原始的思想:允许犯错,但是犯的错要越少越好~这个≠\neq表示分错了,这个≠\neq的个数要越少越好 minb,w∑n=1N(yn≠sign(wT原创 2015-03-13 20:13:45 · 840 阅读 · 0 评论 -
机器学习技法-5-Kernel Logistic Regression
又把soft-margin和hard-margin两种情况对比,还推荐了两个程序包(LIBLINEAR,LIBSVM)margin violating 代表错误程度的 ξn\xi_n ξn=max(1−yn(wTzn+b),0)\xi_n=\max(1-y_n(\mathbf{w}^T\mathbf{z}_n+b),0) 反正就是这两种值,二者取一然后把soft-margin和二次规划问题进行了原创 2015-03-16 16:39:00 · 584 阅读 · 0 评论