求组合数的多种方法

参考自点击打开链接

求C(n,m)%mod的方法总结

1.当n,m都很小的时候可以利用杨辉三角直接求。
C(n,m)=C(n-1,m)+C(n-1,m-1);

2.利用乘法逆元。
乘法逆元:(a/b)%mod=a*(b^(mod-2)) mod为素数。
逆元可以利用扩展欧几里德或欧拉函数求得:

1).扩展欧几里德:b*x+p*y=1 有解,x就是所求

2).费马小定理:b^(p-1)=1(mod p),故b*b^(p-2)=1(mod p),所以x=b^(p-2)
1. n!/(m!*(n-m)! =x%p ,先对算出n!、m!、(n-m)!对p取模的余数,就转换为a/b=x%p;因为p为素数,所以等价于bx+py=a;然后用扩展的欧几里得定理算出 bx’+py’=1的解,x=x’*a,就得到了最终的x的值,即C(m,n)%p得值。

2.逆元 其实如果mod是素数 则b的逆元其实就是b^(mod-2)

也就是 (m!(n-m)!)的逆元为 (m!(n-m)!)p-2 ;

int inv(int a) {  //求a的逆元,即a^(mod-2),mod为质数
    //return fpow(a, MOD-2, MOD);  
    return a == 1 ? 1 : (long long)(MOD - MOD / a) * inv(MOD % a) % MOD;  
}  
LL C(LL n,LL m)  //C(n,m)=n!/(m!*(n-m))
{  
    if(m < 0)return 0;  
    if(n < m)return 0;  
    if(m > n-m) m = n-m;  

    LL up = 1, down = 1; //up分子down分母 
    for(LL i = 0 ; i < m ; i ++){  
        up = up * (n-i) % MOD;  //分子为n到n-m+1的乘积,即n!/(n-m)!
        down = down * (i+1) % MOD; // 分母为1到m的乘积,即m!
    }  
    return up * inv(down) % MOD; //(up/down)%mod=up*down^(mod-2),mod为质数 
}  

求逆元也可以用快速幂

int q_pow(ll a){
	ll ans=1;
	ll b=mod-2,base=a;
	while(b){
		if(b%2) ans=ans*base%mod;
		base=base*base%mod;
		b>>=1;
	}
	return ans;
}

3.当n和m比较大,mod是素数且比较小的时候(10^5左右),通过Lucas定理计算

Lucas定理:A、B是非负整数,p是质数。A B写成p进制:A=a[n]a[n-1]…a[0],B=b[n]b[n-1]…b[0]。
则组合数C(A,B)与C(a[n],b[n])C(a[n-1],b[n-1])…*C(a[0],b[0]) mod p同余
即:Lucas(n,m,p)=C(n%p,m%p)*Lucas(n/p,m/p,p)

对了 除了lucas 还有o1 预处理逆元的方法 操作比lucas简单。lucas 主要是用于 C n m. n和m都很大的情况 只能用lucas变小

void init(){
    fact[0] = 1;
    for(int i = 1; i <= maxn; ++i)
    fact[i] = fact[i-1]*i%mod;
    inv[maxn]=quickM(fact[maxn],mod-2);
    for(int i=maxn-1;i>=0;i--)
    {
        inv[i]=inv[i+1]*(i+1);
        inv[i]%=mod;
    }
}
LL C(int n, int m){
    return ((fact[n]*inv[m])%mod*(inv[n-m]))%mod;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值