来自 2015 年 Yelp Dataset Challenge 数据集的 1,569,264 个样本。每个评级分别包含 130,000 个训练样本和 10,000 个 测试样本。
This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.
译:
本文对字符级卷积网络(ConvNets)在文本分类中的应用进行了实证研究。我们构建了几个大规模的数据集,以证明字符级卷积网络可以达到最先进或最具竞争力的结果。比较了传统模型,如单词包、n-grams及其TFIDF变体,以及基于单词的ConvNets和递归神经网络等深度学习模型。
大家可以到官网地址下载数据