Fashion MNIST

原文:

Fashion MNIST

An MNIST-like dataset of 70,000 28x28 labeled fashion images

Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. Zalando intends Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits.

The original MNIST dataset contains a lot of handwritten digits. Members of the AI/ML/Data Science community love this dataset and use it as a benchmark to validate their algorithms. In fact, MNIST is often the first dataset researchers try. "If it doesn't work on MNIST, it won't work at all", they said. "Well, if it does work on MNIST, it may still fail on others."

Zalando seeks to replace the original MNIST dataset

Each image is 28 pixels in height and 28 pixels in width, for a total of 784 pixels in total. Each pixel has a single pixel-value associated with it, indicating the lightness or darkness of that pixel, with higher numbers meaning darker. This pixel-value is an integer between 0 and 255. The training and test data sets have 785 columns. The first column consists of the class labels (see above), and represents the article of clothing. The rest of the columns contain the pixel-values of the associated image.

  • To locate a pixel on the image, suppose that we have decomposed x as x = i * 28 + j, where i and j are integers between 0 and 27. The pixel is located on row i and column j of a 28 x 28 matrix.

  • For example, pixel31 indicates the pixel that is in the fourth column from the left, and the second row from the top, as in the ascii-diagram below.

Labels

Each training and test example is assigned to one of the following labels:

  • 0 T-shirt/top

  • 1 Trouser

  • 2 Pullover

  • 3 Dress

  • 4 Coat

  • 5 Sandal

  • 6 Shirt

  • 7 Sneaker

  • 8 Bag

  • 9 Ankle boot

译:

Fashion MNIST

一个由70000张28x28标签的时尚图片组成的类似MNIST的数据集

Fashion MNIST是Zalando文章图像的数据集,包含60000个示例的训练集和10000个示例的测试集。每个示例都是一个28x28灰度图像,与10个类中的一个标签相关联。Zalando打算让Fashion MNIST直接替代原来的MNIST数据集,用于机器学习算法的基准测试。它共享相同的图像大小和结构的训练和测试分割。

原始MNIST数据集包含大量手写数字。AI/ML/Data-Science社区的成员喜欢这个数据集,并将其作为验证算法的基准。事实上,MNIST往往是研究人员尝试的第一个数据集。”“如果它在MNIST上不起作用,它就根本不起作用了,”他们说好吧,如果它对MNIST有效,那么其他人也可能失败。”

Zalando试图替换原始的MNIST数据集

每个图像的高度为28像素,宽度为28像素,总共784个像素。每个像素都有一个与之相关联的像素值,表示该像素的亮度或暗度,数字越大表示越暗。此像素值是介于0和255之间的整数。训练和测试数据集有785列。第一列由类标签(见上文)组成,代表服装。其余列包含关联图像的像素值。

●为了在图像上定位一个像素,假设我们将x分解为x=i*28+j,其中i和j是0到27之间的整数。像素位于28 x 28矩阵的第i行和第j列。

●例如,pixel31表示左起第四列和上第二行的像素,如下面的ascii图所示。

标签

每个培训和测试示例都分配给以下标签之一:

●0件T恤/上衣

●1条裤子

●2件套头衫

●3件连衣裙

●4层

●5双凉鞋

●6件衬衫

●7双运动鞋

●8袋

●9踝靴

大家可以到官网地址下载数据集,我自己也在百度网盘分享了一份。可关注本人公众号,回复“2020102701”获取下载链接。

 

©️2020 CSDN 皮肤主题: 护眼 设计师:闪电赇 返回首页