Fashion MNIST


Fashion MNIST

An MNIST-like dataset of 70,000 28x28 labeled fashion images

Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. Zalando intends Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits.

The original MNIST dataset contains a lot of handwritten digits. Members of the AI/ML/Data Science community love this dataset and use it as a benchmark to validate their algorithms. In fact, MNIST is often the first dataset researchers try. "If it doesn't work on MNIST, it won't work at all", they said. "Well, if it does work on MNIST, it may still fail on others."

Zalando seeks to replace the original MNIST dataset

Each image is 28 pixels in height and 28 pixels in width, for a total of 784 pixels in total. Each pixel has a single pixel-value associated with it, indicating the lightness or darkness of that pixel, with higher numbers meaning darker. This pixel-value is an integer between 0 and 255. The training and test data sets have 785 columns. The first column consists of the class labels (see above), and represents the article of clothing. The rest of the columns contain the pixel-values of the associated image.

  • To locate a pixel on the image, suppose that we have decomposed x as x = i * 28 + j, where i and j are integers between 0 and 27. The pixel is located on row i and column j of a 28 x 28 matrix.

  • For example, pixel31 indicates the pixel that is in the fourth column from the left, and the second row from the top, as in the ascii-diagram below.


Each training and test example is assigned to one of the following labels:

  • 0 T-shirt/top

  • 1 Trouser

  • 2 Pullover

  • 3 Dress

  • 4 Coat

  • 5 Sandal

  • 6 Shirt

  • 7 Sneaker

  • 8 Bag

  • 9 Ankle boot


Fashion MNIST


Fashion MNIST是Zalando文章图像的数据集,包含60000个示例的训练集和10000个示例的测试集。每个示例都是一个28x28灰度图像,与10个类中的一个标签相关联。Zalando打算让Fashion MNIST直接替代原来的MNIST数据集,用于机器学习算法的基准测试。它共享相同的图像大小和结构的训练和测试分割。




●为了在图像上定位一个像素,假设我们将x分解为x=i*28+j,其中i和j是0到27之间的整数。像素位于28 x 28矩阵的第i行和第j列。
















©️2020 CSDN 皮肤主题: 护眼 设计师:闪电赇 返回首页