第一章 绪论

本文详细阐述了数据结构的基础概念,包括数据、数据元素、数据项、数据对象、数据类型和抽象数据类型,并介绍了逻辑结构(集合、线性、树形、图状)和存储结构(顺序、链式、索引、散列)。此外,讨论了算法的五大特性及评价标准,以及算法的时间复杂度和空间复杂度分析。
摘要由CSDN通过智能技术生成

专业术语

1.数据

        数据是所有能输入到计算机并能被计算机程序处理的符号总称。

2.数据元素

        数据元素是数据的基本单位

3.数据项

        数据项是数据元素的最小单位

4.数据对象

        数据对象是指性质相同数据元素集合

5.数据类型

        数据类型是一个值的集合与定义在此值集合上的一些操作的总称。

        (例如:int ,char,float,double...)

6.抽象数据类型(ADT)

        通常用(数据对象、数据关系、基本操作)这样的三元组来表示抽象数据类型。

数据结构

        数据结构=逻辑结构+存储结构+运算

1.逻辑结构:指数据元素之间的逻辑关系。

        分4类基本结构:

        (1)集合结构

        (2)线性结构(一对一关系)

        (3)树形结构(一对多关系)

        (4)图状结构或网状结构(多对多关系)

线性结构非线性结构
线性表、栈、队列树、图、集合

2.存储结构(又称物理结构):主要有顺序存储,链式存储,索引存储,散列存储。

3.运算:数据的运算是在数据的逻辑结构上定义的操作算法(如:增删改查)。

算法

        算法是对特定问题求解步骤的一种描述。

五大特性

(1)输入:一个算法有零个或多个输入;

(2)输出:一个算法有一个或多个输出,它们是与输入有特定关系的量;

(3)确定性:其每一条指令必须有确切的含义;

(4)可行性:算法中描述的操作都是可以通过可用的基本运算实现的;

(5)有穷性:算法指令是有限序列,且算法可以在某段时间内完成。

  记忆:“出入确可穷”

评价算法优劣的基本标准

(1)正确性:能确保对某种相对程度的随机输入有正确的输出;

(2)快速性:算法设计合理,执行时间效率高,可以用时间复杂度度量;

(3)可读性:算法描述清晰易懂,便于修改和移植;

(4)健壮性:当输入非法数据时,算法能作出适当的反应和处理;

(5)节省性:算法占用存储容量合理,可以用空间复杂度或存储密度度量。

  记忆:“正确快读键节”

算法分析

1.算法的时间复杂度:是指算法在计算机内执行时所需运行时间的度量。

   记作:T(n)=O(f(n)),其中n为问题的规模大小。

2.算法的空间复杂度:是指算法在计算机内执行时所需存储空间的度量。

   记作:S(n)=O(f(n)),其中n为问题的规模大小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

isxhyeah

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值