抠图
文章平均质量分 90
IT_Herven
这个作者很懒,什么都没留下…
展开
-
Matting Loss 总结
Matting Loss 总结一些定义损失函数用来评价模型的预测值和真实值不一样的程度,一般来说,损失函数越小,通常模型的性能越好。下面对抠图(mattig)任务中常用的损失函数进行总结。Matting 任务的本质是计算图像中每个像素的不透明度(opacity),即alpha matte. 以数学形式概括为 I=αF+(1−α)B\mathrm{I}=\alpha \mathrm{F}+(1-\alpha) \mathrm{B}I=αF+(1−α)B 其中 III 是输入图像, FFF 表原创 2021-08-27 20:15:34 · 2317 阅读 · 2 评论 -
High-Resolution Deep Image Matting
High-Resolution Deep Image MattingAbstract提出了HDMatt,这是第一个基于深度学习的高分辨率输入图像抠图方法以基于面片的裁剪和缝合方式为高分辨率输入运行抠图,并采用新颖的模块设计来解决不同面片之间的上下文相关性和一致性问题与传统的基于补丁的独立计算每个补丁的推理相比,作者明确地用一个新提出的跨补丁上下文模块(CPC)来建模跨补丁上下文相关性,该模块由给定的三重图指导Introduction以往的深度学习方法无法直接处理高清(HR)图像。采用这些方原创 2021-07-01 21:54:29 · 248 阅读 · 0 评论 -
Prior-Induced Information Alignment for Image Matting
Prior-Induced Information Alignment for Image MattingAbstract作者提出了一种新的网络——先验诱导信息对齐抠图网络(PIIAMatting),它可以有效地模拟像素级响应图之间的区别和层级特征图之间的相关性。它主要由动态高斯调制机制( Dynamic Gaussian Modulation mechanism (DGM))和信息对齐策略 ( Information Alignment strategy (IA))组成。DGMDGM原创 2021-06-30 22:12:01 · 370 阅读 · 1 评论