Matting Loss 总结

本文详细总结了抠图任务中的Matting Loss,包括基础损失函数如alpha预测损失、合成损失、拉普拉斯损失和结构相似性指标,以及联合损失函数如Deep Image Matting Loss、Salient Image Matting Loss、AdaMatting Loss、MGMatting Loss、HAttMatting Loss、PIIAMatting Loss和BackgroundMattingV2 Loss。这些损失函数在提高模型预测alpha matte的准确性方面起着关键作用。

Matting Loss 总结

一些定义

损失函数用来评价模型的预测值和真实值不一样的程度,一般来说,损失函数越小,通常模型的性能越好。下面对抠图(matting)任务中常用的损失函数进行总结。

Matting 任务的本质是计算图像中每个像素的不透明度(opacity),即alpha matte. 以数学形式概括为 I=αF+(1−α)B\mathrm{I}=\alpha \mathrm{F}+(1-\alpha) \mathrm{B}I=αF+(1α)B 其中 III 是输入图像, FFF 表示图像 III 的前景 , BBB表示图像 III 的背景,α\alphaα 表示该像素为前景的概率,Matting通常是指由图像内容和用户提供的先验信息来推测 α\alphaαFFF 以及 BBB

matting基础损失函数

(1)alpha预测损失(alpha prediction loss)[1]

损失含义:表示每个像素的真实alpha值和预测alpha值之间的绝对差异。然而,由于绝对值的不可微性,作者使用下面的损失函数来近似它。
Lαi=(αpi−αgi)2+ϵ2,αpi,αgi∈[0,1].\mathcal{L}_{\alpha}^{i}=\sqrt{\left(\alpha_{p}^{i}-\alpha_{g}^{i}\right)^{2}+\epsilon^{2}}, \quad \alpha_{p}^{i}, \alpha_{g}^{i} \in[0,1] .Lαi=(αpiαgi)2+ϵ2 ,αpi,αgi[0,1]. 其中,αpi\alpha_{p}^{i}αpi 表示在像素iii上的预测值,αgi\alpha_{g}^{i}αgi 表示在像素iii上的真实值(gt alpha),ϵ\epsilonϵ 的设置主要为了在两值近似甚至相等时也可以反向传播(backward),通常设置为10−610^{-6}106
当然,这里也可以设置为L2L_2L2格式(αgi−αgi+ϵ)2\left(\alpha_{g}^{i}- \alpha_{g}^{i} + \epsilon\right)^{2}(αgiαgi+ϵ)2

(2)合成损失(composition loss)[1]

损失含义:是标签RGB颜色和由标签真实前景、标签真实背景和预测alpha mattes合成的预测RGB颜色之间的绝对差异。同样,作者用下面的损失函数来近似它。
Lci=(cpi−cgi)2+ϵ2\mathcal{L}_{c}^{i}=\sqrt{\left(c_{p}^{i}-c_{g}^{i}\right)^{2}+\epsilon^{2}}Lci=(cpicgi)2+ϵ2 其中 ccc 表示RGB通道,ppp 表示由预测 α\alphaα 合成的图像,ggg 表示由标签真实 α\alphaα 合成的图像。
合成损失限制网络遵循合成损失的操作,可以得到更准确的阿尔法预测。

(3)拉普拉斯损失( Laplacian Loss)[2]

损失含义:拉普拉斯损失( Laplacian Loss)被用于测量拉普拉斯金字塔之间的差异。这种多尺度损失分离了局部和全局特征,因此潜在地为合成任务提供了更好的损失函数。其数学形式为。
Llapα=∑i=152i−1∥Li(α^)−Li(α)∥1\mathcal{L}_{l a p}^{\alpha}=\sum_{i=1}^{5} 2^{i-1}\left\|L^{i}(\hat{\boldsymbol{\alpha}})-L^{i}(\boldsymbol{\alpha})\right\|_{1}Llapα=i=152i1Li(α^)Li(α)1 其中 Li(α)L^{i}(\boldsymbol{\alpha})Li(α) 表示alpha map的拉普拉斯金字塔(laplacian pyramid)的第iii层;这个损失函数采用了两个五层拉普拉斯金字塔表示之间的差异,权重依次上升。

(4)结构相似性指标( Structural SIMilarity Loss)[3]

损失含义:SSIM反映了两幅图像之间的相似性,取值为[0,1],SSIM数值越高越相似;结构相似性指标衡量两幅图像的相似度。其数学形式为。
SSIM(x,y)=f(l(x,y),c(x,y),s(x,y))=[l(x,y)]α[c(x,y)]β[s(x,y)]γ\begin{aligned} {SSIM}(x, y) &=f(l(x, y), c(x, y), s(x, y)) \\ &=[l(x, y)]^{\alpha}[c(x, y)]^{\beta}[s(x, y)]^{\gamma} \end{aligned}SSIM(x,y)=f(l(x,y),c(x,y),s(x,y))=[l(x,y)]α[c(x,y)]β[s(x,y)]γ 其中 α、β、γ>0\alpha 、 \beta 、 \gamma>0αβγ>0 被用来调整这三个模块的重要性;假设 α、β、γ\alpha 、 \beta 、 \gammaαβγ 都为 1,C3=C2/21, C_{3}=C_{2} / 21,C3=C2/2 ,则
SSIM(x,y)=(2μxμy+C1)(2σxy+C2)(μx2+μy2+C1)(σx2+σy2+C2)S S I M(x, y)=\frac{\left(2 \mu_{x} \mu_{y}+C_{1}\right)\left(2 \sigma_{x y}+C_{2}\right)}{\left(\mu_{x}^{2}+\mu_{y}^{2}+C_{1}\right)\left(\sigma_{x}^{2}+\sigma_{y}^{2}+C_{2}\right)}SSIM(x,y)=(μx2+μy2+C1)(σx2+σy2+C2)(2μxμy+C1)(2σxy+C2)
其中 l(x,y)=2μxμy+C1μx2+μy2+C1c(x,y)=2σxσy+C2σx2+σy2+C2s(x,y)=σxy+C3σxσy+C3l(x, y)=\frac{2 \mu_{x} \mu_{y}+C_{1}}{\mu_{x}^{2}+\mu_{y}^{2}+C_{1}} \quad c(x, y)=\frac{2 \sigma_{x} \sigma_{y}+C_{2}}{\sigma_{x}^{2}+\sigma_{y}^{2}+C_{2}} \quad s(x, y)=\frac{\sigma_{x y}+C_{3}}{\sigma_{x} \sigma_{y}+C_{3}}l(x,y)=μx2+μy2+C12μxμy

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值