6个方法解决Python策略回测耗时问题

对于 Python 做策略回测而言,可以使用以下几种加速方法:

  1. 使用 Cython 或 Numba 对关键算法进行优化,可以提升程序的运行速度。
  2. 使用 pandas 的并行计算功能,如 concurrent.futures 或 dask
  3. 使用 Cython 集成 numba ,这样可以同时使用多线程和单线程进行优化
  4. 使用 Dask 也可以考虑 。
  5. 使用 multi-threading 或 multi-processing 进行并行计算
  6. 如果你策略回测的复杂程度不高,可以尝试使用 C++ 或 C# 等语言来重写策略程序,因为这些语言的运行速度通常比 Python 快得多。

具体的实现方式可能会有所不同,具体使用哪种方法可能需要根据实际情况来考虑。

以下是一个简单的 Python 策略回测代码示例,该策略是基于移动平均线的趋势策略。

import pandas as pd
import numpy as np

# 读取数据
data = pd.read_csv('stock_data.csv')
data['MA5'] = data['Close'].rolling(window=5).mean()
data['MA10'] = data['Close'].rolling(window=10).mean()

# 初始化持仓、账户余额等信息
position = 0
balance = 100000

# 遍历数据进行回测
for i in range(len(data)):
    # 当短期均线上穿长期均线时买入
    if data['MA5'][i] > data['MA10'][i] and position <= 0:
        position += int(balance / data['Close'][i])
        balance -= position * data['Close'][i]
    # 当短期均线下穿长期均线时卖出
    elif data['MA5'][i] < data['MA10'][i] and position > 0:
        balance += position * data['Close'][i]
        position = 0
    # 打印每天的账户余额
    print(balance)

你可以根据上述的方法,使用 Cython 优化两个移动平均线的计算,使用 pandas 的并行计算功能进行优化。或者使用多线程进行优化。

另外需要大家注意的是:对策略进行优化前,请确保策略本身是正确且稳健的,因为优化程序性能并不能保证策略一定能够取得好的收益。

Python+大数据学习路线图(2023版)

  • 开发入门:Linux入门 → MySQL数据库
  • 核心基础: Hadoop
  • 数仓技术: Hive数仓项目
  • PB内存计算: Python入门 → Python进阶→ pyspark框架 → Hive+Spark项目

完整的Python+大数据学习路线在这里,包含从入门到进阶4个阶段内容,8套课程200+小时的内容!

黑马程序员Python:2023年Python+大数据学习路线图icon-default.png?t=MBR7https://zhuanlan.zhihu.com/p/450898507

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值