火车硬座车厢座位分布表

呵呵,回家的感觉,就在那不远的前方····
定员118的车厢号码分布图

------------| |--------
001 002 | | 003 004
005 006 007 | | 008 009
-----------------| |--------
010 011 012 | | 013 014
015 016 017 | | 018 019
-----------------| |--------
020 021 022 | | 023 024
025 026 027 | | 028 029
-----------------| |--------
030 031 032 | | 033 034
035 036 037 | | 038 039
-----------------| |--------
040 041 042 | | 043 044
045 046 047 | | 048 049
-----------------| |--------
050 051 052 | | 053 054
055 056 057 | | 058 059
-----------------| |--------
060 061 062 | | 063 064
065 066 067 | | 068 069
-----------------| |--------
070 071 072 | | 073 074
075 076 077 | | 078 079
-----------------| |--------
080 081 082 | | 083 084
085 086 087 | | 088 089
-----------------| |--------
090 091 092 | | 093 094
095 096 097 | | 098 099
-----------------| |--------
100 101 102 | | 103 104
105 106 107 | | 108 109
-----------------| |--------
110 111 112 | | 113 114
115 116 | | 117 118
-----------------| |--------

回家的时候买到票,可以来看看自己的位子大概是在中间阿,还是靠窗什么的/
定员108的车厢号码分布图


-------------- --| |--------
001 002 | | 003 004
005 006 007 | | 008 009
-----------------| |--------
010 011 012 | | 013 014
015 016 017 | | 018 019
-----------------| |--------
020 021 022 | | 023 024
025 026 027 | | 028 029
-----------------| |--------
030 031 032 | | 033 034
035 036 037 | | 038 039
-----------------| |--------
040 041 042 | | 043 044
045 046 047 | | 048 049
-----------------| |--------
050 051 052 | | 053 054
055 056 057 | | 058 059
-----------------| |--------
060 061 062 | | 063 064
065 066 067 | | 068 069
-----------------| |--------
070 071 072 | | 073 074
075 076 077 | | 078 079
-----------------| |--------
080 081 082 | | 083 084
085 086 087 | | 088 089
-----------------| |--------
090 091 092 | | 093 094
095 096 097 | | 098 099
-----------------| |--------
100 101 102 | | 103 104
105 106 | | 107 108
-----------------| |--------

我们不难看出,凡是座位号为5的整倍数的时候为靠窗的座位,且为三人座的靠窗座
双人座的靠窗座座位号是4+5N(N=0,1,2,3...) 无论108还是118型号的,108和118均为双人座的靠窗座位...
### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值