背景:
最近需要开一个10分钟一期的彩种,需要测试下往第三方出票的速度、获取中奖名单和算奖比对执行时间,10分钟一期对性能要求比较高
出票优化:
1、一次查询多票,开多线程并发投注。
2、一次投注传输多票
3、支付后启用消息驱动投注,为了保险会有一个定时任务扫描表往投注队列中补充遗漏的记录
获取中奖名单:
按照习惯,开始我还以为是FOR循环中多次数据库交互是主要瓶颈,改造成批量后,由于按主键取,速度很快,并没有什么改进,分析日志,从第三方接口取名单会比较慢,交互185次,取了9205条记录,费时1分钟多钟,需要改成并发去取名单
算奖:
还是开多线程进行算奖比对。
主要收获:
如果按主键取记录,并没有我原来想象的那么慢,实际测试了一下
[table]
|单次取100条时间(ms)|循环100次(ms)|取单条(ms)|
|143,|565,|6|
|121,|571,|6|
|115,|778,|6|
[/table]
100次相差5倍,但是还是在毫秒级,优化并不会效果明显。
多线程算奖代码:
最近需要开一个10分钟一期的彩种,需要测试下往第三方出票的速度、获取中奖名单和算奖比对执行时间,10分钟一期对性能要求比较高
出票优化:
1、一次查询多票,开多线程并发投注。
2、一次投注传输多票
3、支付后启用消息驱动投注,为了保险会有一个定时任务扫描表往投注队列中补充遗漏的记录
获取中奖名单:
按照习惯,开始我还以为是FOR循环中多次数据库交互是主要瓶颈,改造成批量后,由于按主键取,速度很快,并没有什么改进,分析日志,从第三方接口取名单会比较慢,交互185次,取了9205条记录,费时1分钟多钟,需要改成并发去取名单
算奖:
还是开多线程进行算奖比对。
主要收获:
如果按主键取记录,并没有我原来想象的那么慢,实际测试了一下
[table]
|单次取100条时间(ms)|循环100次(ms)|取单条(ms)|
|143,|565,|6|
|121,|571,|6|
|115,|778,|6|
[/table]
100次相差5倍,但是还是在毫秒级,优化并不会效果明显。
多线程算奖代码:
private void concurrentCalPrize(final LotteryIssue issue,final Collection<Long> orderIds){
if(orderIds == null || orderIds.isEmpty()){
return ;
}
final CountDownLatch latch = new CountDownLatch(orderIds.size());
ExecutorService service = new ThreadPoolExecutor(5,5,100,TimeUnit.SECONDS,new LinkedBlockingQueue<Runnable>(Integer.MAX_VALUE));
for (final long jdorderId : orderIds) {
service.execute(new Runnable(){public void run(){
try{
calOrderPrize(issue,jdorderId);
}catch(Exception e){
log.error("",e);
}finally{
latch.countDown();
}
}});
}
try {
latch.await();
} catch (InterruptedException e) {
log.error("", e);
}
try {
service.awaitTermination(5, TimeUnit.SECONDS);
} catch (InterruptedException e) {
log.error("", e);
}
service.shutdown();
}