什么是Mash-up应用系统

IBM Developer上对于Mash-up的解释:[url=http://www.ibm.com/developerworks/cn/xml/x-mashups.html]Mashups:Web 应用程序新成员[/url]

另外在网上也发现别人对Mash-up的简单解释,觉得很好现转过来。
[quote]
Mashup就是我们说的“新闻聚合”、“内容聚合”的“聚合”,我在整理日文资料web2.0概念时,就是用的这个词,从Mashup的英文定义来看,“Mashup :web application hybrid, a website or web application that combines content from more than one source”,直接翻译可以是“Mashup:网络聚合应用,有一个或者多个信息源整合起来的网站或者网络应用”。

也就是说,mashup或聚合,就是从多个分散的站点获取信息源,组合成新网络应用的一种应用模式。“聚合”有别于网站之间信息相对独立,早期,一个网站的内容通常只来自于本站之内(人工拷贝过来的信息,已经存储在本地,不是直接使用信息源数据),新的web2.0潮流,希望网站之间打破隔离,能够共享信息。

网站间机器级的信息共享,与以前通过编辑拷贝或者用户调换网站地址的方式来看内容,存在很大的不同,网站间将通过统一的标准共享结构化的数据,使得巨大的互联网网络成为一台真正意义上的超级计算机,打破网站之间孤岛林立的现状。

RSS(网站同步摘要)与Mashup的区别在于,RSS提供了可供聚合的源,Mashup实现聚合。

聚合的初级形式,就是我们看到的新闻聚合,通过把不同的RSS信息源拼在一起,实现一个网站同时看到多个网站的内容(摘要),RSS在线阅读器就是这种性质的网站。

更有意义的聚合,是不同的数据源之间复合产生出附加值,数据源不仅限于RSS,也可以通过Web API(网络应用接口),有兴趣的可以到Mashup Feed网站上去体验一下。
[/quote]
内容概要:本文详细介绍了一个基于CNN-GRU与AdaBoost集成的深度学习模型在时间序列预测中的完整项目实现。该模型通过卷积神经网络(CNN)提取局部时空特征,利用门控循环单元(GRU)捕捉长期时序依赖,并结合AdaBoost自适应提升算法增强模型泛化能力与鲁棒性,有效应对非线性、噪声干扰和复杂动态变化的挑战。项目涵盖从数据生成、预处理、模型构建、训练优化到结果可视化和GUI交互界面开发的全流程,提供了完整的代码示例与模块化系统架构设计,支持金融、能源、交通、医疗等多个领域的高精度预测应用。; 适合人群:具备一定Python编程基础和机器学习知识,熟悉深度学习框架(如TensorFlow/Keras)的数据科学家、算法工程师及高校研究人员,尤其适合从事时间序列分析、智能预测系统开发的相关从业者。; 使用场景及目标:①实现高精度时间序列预测,如股票价格、电力负荷、交通流量等;②构建具备强鲁棒性和抗噪能力的工业级预测系统;③开发集成深度学习与集成学习的复合模型以提升预测稳定性;④通过GUI界面实现模型的便捷部署与交互式分析。; 阅读建议:建议读者结合文档中的代码逐步实践,重点关注数据预处理、模型集成机制与可视化模块的设计逻辑,同时可在不同数据集上进行迁移实验,深入理解CNN-GRU与AdaBoost协同工作的原理与优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值