典型相关分析及其适用范围和spss操作(转)

典型相关分析是一种统计方法,用于研究两组变量的整体相关性,特别是在无法确定自变量和因变量的情况下。该方法通过寻找相关性最大的线性组合来简化问题。在SPSS中,可通过句法进行典型相关分析。该分析适用于多对多变量的相关性研究,例如居民生活环境与健康状况的关系。在给定的数据实例中,通过典型相关分析,发现头型变量间存在显著的相关性。
摘要由CSDN通过智能技术生成
看文章《科学学研究》2010年8月一片文章时,看到典型相关分析的研究,顿时傻了,过去没学过啊。看别人还是用spss做的统计分析就更傻了,好像没哪个老师讲过这个分析。有点云里雾里。还是赶紧学习一下吧。最后那个sas的例题我想大概反复看三篇才能懂。

1. 典型相关分析的基本思想 Canonical Correlation Analysis

简单相关系数(即普通回归方法)描述两组变量的相关关系的缺点:只是孤立考虑单个X与单个Y间的相关,没有考虑X、Y变量组内部各变量间的相关。两组间有许多简单相关系数,使问题显得复杂,难以从整体描述。典型相关是简单相关、多重相关的推广。典型相关是研究两组变量之间相关性的一种统计分析方法。也是一种降维技术。
1936年,Hotelling提出典型相关分析。考虑两组变量的线性组合, 并研究它们之间的相关系数p(u,v).在所有的线性组合中, 找一对相关系数最大的线性组合, 用这个组合的单相关系数来表示两组变量的相关性, 叫做两组变量的典型相关系数, 而这两个线性组合叫做一对典型变量。在两组多变量的情形下, 需要用若干对典型变量才能完全反映出它们之间的相关性。下一步, 再在两组变量的与u1,v1不相关的线性组合中, 找一对相关系数最大的线性组合, 它就是第二对典型变量, 而且p(u2,v2)就是第二个典型相关系数。这样下去, 可以得到若干对典型变量, 从而提取出两组变量间的全部信息。

2.典型相关分析的适用范围

为了研究两组变量的关系,如果在理论上能解释谁是自变量,谁是因变量,自然就做路径分析(最好用Lisrel或者Amos等软件,用SPSS应该不够科学)。
如果不能辨别两组变量谁是是自变量,谁是因变量,那再用回归就不恰当的,有一种多对多的相关可以使用,那就是典型相关Canonical correlation
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值