Kruscal算法+并查集 求解最小生成树

http://ac.jobdu.com/problem.php?id=1347 孤岛连通工程

刚开始的时候使用qsort排序函数进行排序提交一直都是TLE,后来无意中改为sort排序函数提交就AC了,真是太神奇了。。。

#include<iostream> #include<algorithm> using namespace std; #include<stdio.h> struct Edge { int x; int y; int cost; }edge[10001]; int set[10001]; inline int find(int x) //带路径优化的并查集查找算法 { int i,j,r; r=x; while(set[r]!=r) r=set[r]; i=x; while(i!=r) { j=set[i]; set[i]=r; i=j; } return r; } inline void merge(int x,int y) //优化的并查集归并算法 { int t=find(x); int h=find(y); if(t<h) set[h]=t; else set[t]=h; } /* int cmp(const void *a,const void *b) { return((*(struct Edge *)a).cost-(*(Edge *)b).cost); } */ bool cmp(const Edge& a,const Edge& b) { return a.cost<b.cost; } void init(int n) //初始化并查集,各点为孤立点,分支数为n { for(int i=1;i<=n;i++) set[i]=i; } int kruskal(int n,int m) { int i,num,sum,from,to; //qsort(edge,m,sizeof(edge[0]),cmp); sort(edge,edge+m,cmp); sum=num=0; for(i=0;i<m;i++) { from = find(edge[i].x); //判断线段的起始点所在的集合 to = find(edge[i].y); //判断线段的终点所在的集合 if(from != to) //如果线段的两个端点所在的集合不一样 { merge(from,to); //合并两个集合 sum+=edge[i].cost; num++; } if(num==n-1) break; } if(num<n-1) return -1; else return sum; } int main(void) { int i,n,m,k; while(scanf("%d %d",&n,&m)!=EOF) { init(n); //初始化 for(i=0;i<m;i++) { scanf("%d %d %d",&edge[i].x,&edge[i].y,&edge[i].cost); } k=kruskal(n,m); if(k==-1) printf("no\n"); else printf("%d\n",k); } return 0; }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值