畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 34203 Accepted Submission(s): 18092
Problem Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2 1 3 4 3 3 3 1 2 1 3 2 3 5 2 1 2 3 5 999 0 0
Sample Output
1 0 2 998Huge input, scanf is recommendeHintHint水题一道,赤裸裸并查集
#include<iostream>
#include<cstdio>
using namespace std;
int pre[1000+5];
int find(int x)
{
int r=x;
while(r!=pre[r])
r=pre[r];
int i=x,j;
while(pre[i]!=r)
{
j=pre[i];
pre[i]=r;
i=j;
}
return r;
}
int main()
{
int n,m;
while(cin>>n>>m&&n)
{
int total=n-1;//最小生成树一定有n-1条边
int a,b,x,y;
for(int i=1;i<=n;i++)
pre[i]=i;
while(m--)
{
scanf("%d%d",&a,&b);
x=find(a);
y=find(b);
if(x!=y)
{
pre[x]=y;
total--;
}
}
cout<<total<<endl;
}
return 0;
}
畅通工程
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 19381 Accepted Submission(s): 8235
Problem Description
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
Output
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
Sample Input
3 3 1 2 1 1 3 2 2 3 4 1 3 2 3 2 0 100
Sample Output
3 ?
Source
#include<iostream>
#include<cstdio>
using namespace std;
int pre[100+5];
int a[1000+5],b[1000+5],c[1000+5];
int total,num;
int find(int x)
{
int r=x;
while(r!=pre[r])
r=pre[r];
int i=x,j;
while(pre[i]!=r)
{
j=pre[i];
pre[i]=r;
i=j;
}
return r;
}
void join(int x,int y,int cou)
{
int f1=find(x);
int f2=find(y);
if(f1!=f2)
{
pre[f1]=f2;
total+=cou;
num++;
}
}
int main()
{
int n,m;
while(cin>>n>>m&&n)
{
total=0;num=0;
for(int i=1;i<=n;i++)
scanf("%d%d%d",&a[i],&b[i],&c[i]);
for(int i=1;i<=n-1;i++)
for(int j=1;j<=n-1-i;j++)
{
if(c[j]>c[j+1])
{
int t1=c[j+1];
c[j+1]=c[j];
c[j]=t1;
int t2=a[j+1];
a[j+1]=a[j];
a[j]=t2;
int t3=b[j+1];
b[j+1]=b[j];
b[j]=t3;
}
}
for(int i=1;i<=m;i++)
pre[i]=i;
for(int i=1;i<=n;i++)
{
join(a[i],b[i],c[i]);
}
if(num==(m-1))
cout<<total<<endl;
else
cout<<"?"<<endl;
}
return 0;
}
还是畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 29103 Accepted Submission(s): 13013
Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
Sample Output
3 5Huge input, scanf is recommended.HintHint
#include<iostream>
#include<algorithm>
using namespace std;
struct enge{
int a;
int b;
int c;
}M[5500];
int cmp(enge e,enge f)
{
return e.c<f.c;
}
int pre[105];
int total;
int find(int x)
{
int r=x;
while(pre[r]!=r)
{
r=pre[r];
}
int i=x,j;
while(pre[i]!=r)
{
j=pre[i];
pre[i]=r;
i=j;
}
return r;
}
int join(int a,int b)
{
int f1=find(a);
int f2=find(b);
if(f1!=f2)
{
pre[f1]=f2;
return 1;
}
return 0;
}
int main()
{
int n;
while(cin>>n&&n)
{
total =0;
int num=0;
int n1=(n-1)*n/2;
for(int i=1;i<=n1;i++)
scanf("%d%d%d",&M[i].a,&M[i].b,&M[i].c);
for(int i=1;i<=n;i++)
pre[i]=i;
sort(M,M+n1+1,cmp);
for(int i=1;i<=n1;i++)
{
if(join(M[i].a,M[i].b))
{
total+=M[i].c;
num++;
}
if(num==(n-1))
break;
}
cout<<total<<endl;
}
return 0;
}