TechEd 2005游记(三)

我的TechEd才刚开始

2005924日星期六

其实写下这段文字的时候已经是星期一的中午了,我依旧哈欠连天,可别以为我偷懒,这几天我都是两点以后睡觉,实在没时间写BLOG。看来TechEd对大家都是体力和精神上的双重考验。

23号晚上没睡好,想自己的session怎么才能讲好一点,因为我的session是第三天中午11:3012:30,第三天已经是人困马乏的时候了,又是个中午,把人留住很难的。没睡好,所以第二天自然就起得晚,大会还为每个房间在7:30订了morning call,真是周扒皮啊。到了实验室已经九点多了,没吃早饭,也没洗澡,估计当时的摸样会很吓人。因为平时都不吃早饭,所以也没觉得有什么不对。可是谁知道这次没吃饭,会让我付出惨痛的代价……

上午依旧忙碌和有序,实验室始终没有空的座位,还有一位老兄一连三天都来实验室,相信他的收获会非常大的。我们也送出了很多份礼品,让我感到最欣慰的是,不但有初学者来实验室,而且还有MCTMicrosoft哪个部门的vender,他们做实验都很快,而且问得问题也专业,而我们设置的实验目标对他们来说,显然是太简单了。不过这也从另一个方面说明我们动手实验室的价值。

上午实验室结束后,我们配置了一下机器,下去吃饭的时候就很少有菜了,只有冬瓜、白菜、炒面和米饭。尽管肚子很饿,但是看着盘子里的东西实在很难吃得下去。九华山庄的饭菜实在和四星有差距。匆匆吃完饭,先赶场去听栾跃的BOF,大家的问题主要是围绕需求变更、设计在走,我问了一个关于测试的课。比起第一天BOF的冷清来说,后边的BOF人越来越多,不过栾跃的BOF能达到40多个人在听,也是十分不容易的事情。

我没有等到BOF结束,就去听孙展波的WPF 360了。到场的人并不是很多,没有出现爆满的景象。不过也难怪,Avlon现在还有点水中月的味道,来的人更多是冲孙展波来的。课很精彩,讲得很紧凑,现场气氛也非常好,因为第一个问题就是让人家问他两个问题,所以后边随时有人问他问题,形成了一个良性循环。

然后去听施凡的课,遇到蝈蝈他们,每逢有MVP的课程,其他MVP只要有时间都会尽量去支持。施凡的课程和他录制的Webcast不太一样,加入了一些新的东西,尽管我有点听不大懂,谁叫我不是VB程序员呢。最倒霉的是,我想给他拍几张照片,结果拍到第三张就没电了。我还没有带充电器,原以为电池是满的呢,哭!还想明天请人拍两张照片呢,痛哭!!

六点多,我就跑到六分会场等着试机器,听了半场朱爽的测试方面的课程,讲得也是很不错,老师那种带一些北京腔和英语腔的混合发音很有意思。会后提的几个问题质量也非常高,其中一个问题我印象深刻:“我们可以用测试来保证开发的质量,可是如何保证测试的质量呢?”这是一个覆盖率的问题,老师提供了一些没有出现在正式文档里的经验,应该是非常管用的。还有一个就是针对偶发性的BUG,老师的方案是一个小时不重复出现,就认为这个BUG重现的可能性很小。来自Redmond的老师往往都是来自开发第一线,他们的课程更多是经验之谈,所以非常实在。

试好机器,就去参加TechEd的晚会,这是每年的保留节目。我坐在讲师席那边,视野很好在第二排,一群穿蓝衬衣的人坐在一起,才发现衬衫颜色真的不好看。急匆匆吃完饭,看着一个个奖品被抽出,一群人拿着没有ID的讲师牌相互叹息。我在施凡的帮助下,修改明天课程演示的界面,为了让人们能看清楚,所以要把字体调大。

其间有个哥们竟然要求动手实验室24小时开放,听着确实有种幸福的眩晕。幸福是因为动手实验室被大家认可,晕是因为大家不知道动手实验室讲师的苦处,几乎开放时间都很难坐下来休息,完全是个体力活。后来请讲师上台的时候,看到周围羡慕的目光,心里的自豪感油然而生。尽管我是第一次站在TechEd的讲台上,但是我也应该利用这个舞台,把自己技术拿出来和大家分享,更关键的是,TechEd本来就是技术人员的节日,我也要努力把这种快乐的情绪带到明天的讲座中去。在台上,看到满眼的荧光棒,我第一次觉得自己拥有了一个舞台。

绚烂过后总会归于沉寂,晚会之后,我没有看焰火,拉着施凡在二楼找了个安静的角落,坐下来准备明天的课程和问题。我也准备了三道问题,准备在课后回答问题来派送奖品,这是跟孙展波学的。上次TechEd我只会关心技术本身,而不会关注讲师们的讲演技巧和方法。但是这次逼得你不得不学。

11 点半的时候,我电脑的电没有了,我准备得也差不多了,一切都等明天的好戏开场了。
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值