n阶矩阵旋转
矩阵的顺时针旋转基本有四种情况:
- 0度
- 90度
- 180度
- 270度,相当于逆向的90度
算法思路
矩阵的计算主要是考虑下标之间的变换,先上一张我在纸上分析的图
(ps:好大啊,没有压缩)
以aij为例,i,j均从1开始计数
90度旋转:
- 列号变为行号
- (n - 行号 + 1)变成列号
- 规律: a[i][j] = b[j][n - i + 1]
180度旋转:
- (n - 行号 + 1)变为行号
- (n - 列号 + 1)变为列号
- 规律:a[i][j] = b[n - i + 1][n - j + 1]
270度旋转(相当于逆时针旋转90度):
- 行号变为列号
- (n - 列号 + 1)变为行号
- 规律:a[i][j] = b[n - j + 1][i]
acm题目
题目描述:
任意输入两个9阶以下矩阵,要求判断第二个是否是第一个的旋转矩阵,如果是,输出旋转角度(0、90、180、270),如果不是,输出-1。
要求先输入矩阵阶数,然后输入两个矩阵,每行两个数之间可以用任意个空格分隔。行之间用回车分隔,两个矩阵间用任意的回车分隔。
输入:
输入有多组数据。
每组数据第一行输入n(1<=n<=9),从第二行开始输入两个n阶矩阵。
输出:
判断第二个是否是第一个的旋转矩阵,如果是,输出旋转角度(0、90、180、270),如果不是,输出-1。
如果旋转角度的结果有多个,则输出最小的那个。
样例输入:
3 1 2 3 4 5 6 7 8 9 7 4 1 8 5 2 9 6 3
样例输出:
90
AC代码(c语言实现)
#include <stdio.h>
#include <stdlib.h>
#define len 10
int switchMatrix(int (*a)[len], int (*b)[len], int n);
int main()
{
int i, j, n, angle;
int a[len][len], b[len][len];
while(scanf("%d", &n) != EOF)
{
//接收第一个矩阵
for(i = 0; i < n; i ++)
{
for(j = 0; j < n; j ++)
{
scanf("%d", *(a + i) + j);
}
}
//接收第二个数组
for(i = 0; i < n; i ++)
{
for(j = 0; j < n; j ++)
{
scanf("%d", *(b + i) + j);
}
}
//矩阵比较
angle = switchMatrix(a, b, n);
printf("%d\n", angle);
}
return 0;
}
int switchMatrix(int (*a)[len], int (*b)[len], int n)
{
int angle, i, j;
for(angle = 0, i = 0; i < n; i ++)
{
for(j = 0; j < n; j ++)
{
if(angle == 0)
{
if(a[i][j] == b[i][j])
{
continue;
}else
{
angle = 90;
}
}
if(angle == 90)
{
if(a[i][j] == b[j][n - i - 1])
{
continue;
}else
{
angle = 180;
}
}
if(angle == 180)
{
if(a[i][j] == b[n - i - 1][n - j -1])
{
continue;
}else
{
angle = 270;
}
}
if(angle == 270)
{
if(a[i][j] == b[n - j - 1][i])
{
continue;
}else
{
angle = -1;
}
}
if(angle == -1)
{
break;
}
}
if(angle == -1)
{
break;
}
}
return angle;
}