poj 3264 ST算法

RMQ问题,既可以用线段树解决,也可以用ST算法,关于ST算法,这篇文章图文并茂,还有动画演示,讲解非常精彩,一

学就会。我就不罗嗦了,直接贴代码。

 

#include <stdio.h>

#define DEBUG

#ifdef DEBUG
#define debug(...) printf( __VA_ARGS__) 
#else
#define debug(...)
#endif

#define MIN(a, b) (a) < (b) ? (a): (b)
#define MAX(a, b) (a) > (b) ? (a): (b)

#define inf 20000000
#define N 50001

struct node 
{
	int min, max;
};
struct node f[100001][16];

int main()
{
	int 	i, q, s, t, n, j, l, max_h, min_h;

	scanf("%d %d", &n, &q);
	for (i = 1; i <= n; i++) {
		scanf("%d", &f[i][0].min);
		f[i][0].max = f[i][0].min;
	}

	//预处理
	for (j = 1, l = 2; l <= n; j++, l <<= 1) {
		for (i = 1; i <= n && (l+i-1) <= n; i++) {
				f[i][j].min = MIN(f[i][j-1].min, f[l/2+i][j-1].min);
				f[i][j].max = MAX(f[i][j-1].max, f[l/2+i][j-1].max);
		}
	}

	while (q--) {
		scanf("%d %d", &s, &t);
		//求查询子区间的长度l
		i = (t-s+1);
		for (j = 0, l = 1; l <= i; j++, l <<= 1);
		j--; l >>= 1;
		//根据子区间直接求出答案
		max_h = MAX(f[s][j].max, f[t-l+1][j].max);
		min_h = MIN(f[s][j].min, f[t-l+1][j].min);
		printf("%d\n", max_h-min_h);
	}

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值