RMQ问题,既可以用线段树解决,也可以用ST算法,关于ST算法,这篇文章图文并茂,还有动画演示,讲解非常精彩,一
学就会。我就不罗嗦了,直接贴代码。
#include <stdio.h> #define DEBUG #ifdef DEBUG #define debug(...) printf( __VA_ARGS__) #else #define debug(...) #endif #define MIN(a, b) (a) < (b) ? (a): (b) #define MAX(a, b) (a) > (b) ? (a): (b) #define inf 20000000 #define N 50001 struct node { int min, max; }; struct node f[100001][16]; int main() { int i, q, s, t, n, j, l, max_h, min_h; scanf("%d %d", &n, &q); for (i = 1; i <= n; i++) { scanf("%d", &f[i][0].min); f[i][0].max = f[i][0].min; } //预处理 for (j = 1, l = 2; l <= n; j++, l <<= 1) { for (i = 1; i <= n && (l+i-1) <= n; i++) { f[i][j].min = MIN(f[i][j-1].min, f[l/2+i][j-1].min); f[i][j].max = MAX(f[i][j-1].max, f[l/2+i][j-1].max); } } while (q--) { scanf("%d %d", &s, &t); //求查询子区间的长度l i = (t-s+1); for (j = 0, l = 1; l <= i; j++, l <<= 1); j--; l >>= 1; //根据子区间直接求出答案 max_h = MAX(f[s][j].max, f[t-l+1][j].max); min_h = MIN(f[s][j].min, f[t-l+1][j].min); printf("%d\n", max_h-min_h); } return 0; }