POJ 3264 RMQ--ST 算法

Balanced Lineup
Time Limit: 5000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u

Submit Status

Description

For the daily milking, Farmer John’s N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input
Line 1: Two space-separated integers, N and Q.
Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2.. N+ Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output
Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

Source
USACO 2007 January Silver

转自 : http://www.cnblogs.com/Missa/archive/2012/10/01/2709686.html

  1. 概述

RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值。这两个问题是在实际应用中经常遇到的问题,下面介绍一下解决这两种问题的比较高效的算法。当然,该问题也可以用线段树(也叫区间树)解决,算法复杂度为:O(N)~O(logN),这里我们暂不介绍。

2.RMQ算法

对于该问题,最容易想到的解决方案是遍历,复杂度是O(n)。但当数据量非常大且查询很频繁时,该算法无法在有效的时间内查询出正解。

本节介绍了一种比较高效的在线算法(ST算法)解决这个问题。所谓在线算法,是指用户每输入一个查询便马上处理一个查询。该算法一般用较长的时间做预处理,待信息充足以后便可以用较少的时间回答每个查询。ST(Sparse Table)算法是一个非常有名的在线处理RMQ问题的算法,它可以在O(nlogn)时间内进行预处理,然后在O(1)时间内回答每个查询。

(一)首先是预处理,用动态规划(DP)解决。

设A[i]是要求区间最值的数列,F[i, j]表示从第i个数起连续2^j个数中的最大值。(DP的状态)

例如:

A数列为:3 2 4 5 6 8 1 2 9 7

F[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。同理 F[1,1] = max(3,2) = 3, F[1,2]=max(3,2,4,5) = 5,F[1,3] = max(3,2,4,5,6,8,1,2) = 8;

并且我们可以容易的看出F[i,0]就等于A[i]。(DP的初始值)

这样,DP的状态、初值都已经有了,剩下的就是状态转移方程。

我们把F[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),从 i 到i + 2 ^ (j - 1) - 1为一段,i + 2 ^ (j - 1)到i + 2 ^ j - 1为一段(长度都为2 ^ (j - 1))。用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。F[i,j]就是这两段各自最大值中的最大值。于是我们得到了状态转移方程F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])。

代码如下:

    void RMQ(int num) //预处理->O(nlogn)  
    {  
        for(int j = 1; j < 20; ++j)  
            for(int i = 1; i <= num; ++i)  
                if(i + (1 << j) - 1 <= num)  
                {  
                    maxsum[i][j] = max(maxsum[i][j - 1], maxsum[i + (1 << (j - 1))][j - 1]);  
                    minsum[i][j] = min(minsum[i][j - 1], minsum[i + (1 << (j - 1))][j - 1]);  
                }  
    }  

这里我们需要注意的是循环的顺序,我们发现外层是j,内层所i,这是为什么呢?可以是i在外,j在内吗?

答案是不可以。因为我们需要理解这个状态转移方程的意义。

状态转移方程的含义是:先更新所有长度为F[i,0]即1个元素,然后通过2个1个元素的最值,获得所有长度为F[i,1]即2个元素的最值,然后再通过2个2个元素的最值,获得所有长度为F[i,2]即4个元素的最值,以此类推更新所有长度的最值。

而如果是i在外,j在内的话,我们更新的顺序就是F[1,0],F[1,1],F[1,2],F[1,3],表示更新从1开始1个元素,2个元素,4个元素,8个元素(A[0],A[1],….A[7])的最值,这里F[1,3] = max(max(A[0],A[1],A[2],A[3]),max(A[4],A[5],A[6],A[7]))的值,但是我们根本没有计算max(A[0],A[1],A[2],A[3])和max(A[4],A[5],A[6],A[7]),所以这样的方法肯定是错误的。

为了避免这样的错误,一定要好好理解这个状态转移方程所代表的含义。

(二)然后是查询。

假如我们需要查询的区间为(i,j),那么我们需要找到覆盖这个闭区间(左边界取i,右边界取j)的最小幂(可以重复,比如查询5,6,7,8,9,我们可以查询5678和6789)。

因为这个区间的长度为j - i + 1,所以我们可以取k=log2( j - i + 1),则有:RMQ(A, i, j)=max{F[i , k], F[ j - 2 ^ k + 1, k]}。

举例说明,要求区间[2,8]的最大值,k = log2(8 - 2 + 1)= 2,即求max(F[2, 2],F[8 - 2 ^ 2 + 1, 2]) = max(F[2, 2],F[5, 2]);

这个是直接保存最大最下的值


#include<iostream>
#include<algorithm>
#include<map>
#include<cstdio>
#include<cstdlib>
#include<vector>
#include<cmath>
#include<cstring>
#include<stack>
#include<string>
#include<fstream>
#define pb(s) push_back(s)
#define cl(a,b) memset(a,b,sizeof(a))
#define bug printf("===\n");
using namespace std;
typedef vector<int> VI;
#define rep(a,b) for(int i=a;i<b;i++)
#define rep_(a,b) for(int i=a;i<=b;i++)
#define P pair<int,int>
#define bug printf("===\n");
#define PL(x) push_back(x)
const int maxn=50010;
const int inf=999999;
typedef long long LL;

int ma[maxn][20],mi[maxn][20];

void init_rmq(int num){//初始化ST
    for(int j=1;j<20;j++){
        for(int i=1;i+(1<<j)-1<=num;i++){
            ma[i][j]=max(ma[i][j-1],ma[i+(1<<(j-1))][j-1]);
            mi[i][j]=min(mi[i][j-1],mi[i+(1<<(j-1))][j-1]);
        }
    }
}

int query(int l,int r){//查询最大值,和最小值
    int k=(int)(log(r-l+1)/log(2.0));
    int a=max(ma[l][k],ma[r-(1<<k)+1][k]);
    int b=min(mi[l][k],mi[r-(1<<k)+1][k]);
    return a-b;
}

int main(){
    int n,m;
    while(~scanf("%d%d",&n,&m)){

        for(int i=1;i<=n;i++){
            scanf("%d",&ma[i][0]);//读入的同时做初始化
            mi[i][0]=ma[i][0];
        }
        init_rmq(n);
        while(m--){
            int l,r;
            scanf("%d%d",&l,&r);
            printf("%d\n",query(l,r));
        }
    }
    return 0;
}

> 结合:http://blog.csdn.net/shahdza/article/details/7689338
> 写了一种保存的是最大最小值的下标。
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<queue>
#include<set>
#include<stack>
#define cl(a,b) memset(a,b,sizeof(a));
#define LL long long
#define P pair<int,int>
#define X first
#define Y second
#define pb push_back
using namespace std;
const int maxn=500005;
const int inf=9999999;
const int mod=100007;
int a[maxn];
int mx[maxn][20];
int mi[maxn][20];
void init_rmq(int n){
    for(int i=0;i<n;i++){//初始化长度为0 的边界,
        mx[i][0]=i;
        mi[i][0]=i;
    }
    for(int j=1;(1<<j)<=n;j++){///从1开始
        for(int i=0;i+(1<<j)-1<n;i++){
            if(a[mx[i][j-1]]>a[mx[i+(1<<(j-1))][j-1]]){
                mx[i][j]=mx[i][j-1];
            }
            else {
                mx[i][j]=mx[i+(1<<(j-1))][j-1];
            }

            if(a[mi[i][j-1]]<a[mi[i+(1<<(j-1))][j-1]]){
                mi[i][j]=mi[i][j-1];
            }
            else {
                mi[i][j]=mi[i+(1<<(j-1))][j-1];
            }
        }
    }
}
int query(int l,int r){
    l--;r--;
    int k=int(log(r-l+1)/log(2.0));
    int x=max(a[mx[l][k]],a[mx[r-(1<<k)+1][k]]);//查询,注意
    int y=min(a[mi[l][k]],a[mi[r-(1<<k)+1][k]]);
    return x-y;
}
int main(){
    int n,m;
    while(~scanf("%d%d",&n,&m)){
        for(int i=0;i<n;i++){
            scanf("%d",&a[i]);
        }
        init_rmq(n);
        while(m--){
            int l,r;
            scanf("%d%d",&l,&r);
            printf("%d\n",query(l,r));
        }
    }
    return 0;
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值