看了很长时间二分图的匹配,没怎么理解,带权重的就更不用说了。
但是既然看了这题,先给刷过吧。
粘的别人的模板,过了,心里很不爽,有空一定要好好读读《算法导论》的这个章节。
#include<stdio.h> #include<stdlib.h> #include <string.h> #define MAXN 110 #define inf 1000000000 #define _clr(x) memset(x,0xff,sizeof(int)*n) //please declare parameters here int N,M; int mat[MAXN][MAXN]; int House[MAXN][2],Man[MAXN][2]; int H_num,M_num,Max_num; int match1[MAXN],match2[MAXN]; //please declare functions here. int fee(int i,int j) { return abs(House[i][0]-Man[j][0])+abs(House[i][1]-Man[j][1]); } void Input() //input data and construct the graph { int i,j; char ch; H_num=0; M_num=0; for(i=0;i<N;i++) { for(j=0;j<M;j++) { ch=getchar(); if(ch=='H') { House[H_num][0]=i; House[H_num][1]=j; H_num++; } else if(ch=='m') { Man[M_num][0]=i; Man[M_num][1]=j; M_num++; } } ch=getchar(); } memset(mat,0,sizeof(mat)); for(i=0;i<H_num;i++) { for(j=0;j<M_num;j++) { mat[i][j]=0-fee(i,j); } } } //模板开始 //二分图最佳匹配,kuhn munkras算法,邻接阵形式,复杂度O(m*m*n) //返回最佳匹配值,传入二分图大小m,n和邻接阵mat,表示权值 //match1,match2返回一个最佳匹配,未匹配顶点match值为-1 //一定注意m<=n,否则循环无法终止 //最小权匹配可将权值取相反数 int kuhn_munkras(int m,int n,int mat[][MAXN],int* match1,int* match2){ int s[MAXN],t[MAXN],l1[MAXN],l2[MAXN],p,q,ret=0,i,j,k; for (i=0;i<m;i++) for (l1[i]=-inf,j=0;j<n;j++) l1[i]=mat[i][j]>l1[i]?mat[i][j]:l1[i]; for (i=0;i<n;l2[i++]=0); for (_clr(match1),_clr(match2),i=0;i<m;i++){ for (_clr(t),s[p=q=0]=i;p<=q&&match1[i]<0;p++) for (k=s[p],j=0;j<n&&match1[i]<0;j++) if (l1[k]+l2[j]==mat[k][j]&&t[j]<0){ s[++q]=match2[j],t[j]=k; if (s[q]<0) for (p=j;p>=0;j=p) match2[j]=k=t[j],p=match1[k],match1[k]=j; } if (match1[i]<0){ for (i--,p=inf,k=0;k<=q;k++) for (j=0;j<n;j++) if (t[j]<0&&l1[s[k]]+l2[j]-mat[s[k]][j]<p) p=l1[s[k]]+l2[j]-mat[s[k]][j]; for (j=0;j<n;l2[j]+=t[j]<0?0:p,j++); for (k=0;k<=q;l1[s[k++]]-=p); } } for (i=0;i<m;i++) ret+=mat[i][match1[i]]; return ret; } //模板结束 int main() { freopen("input.txt","r",stdin); //input your ... while(scanf("%d %d\n",&N,&M)!=EOF) { if(N==0&&M==0) break; Input(); int result=kuhn_munkras(H_num,M_num,mat,match1,match2); printf("%d\n",abs(result)); } return 0; }