二分图模版

二分图的基本概念

二分图:二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。简而言之,就是顶点集V可分割为两个互不相交的子集,并且图中每条边依附的两个顶点都分属于这两个互不相交的子集,两个子集内的顶点不相邻。

二分图的判断

我们可以利用二分图的充要条件,常见方法是染色法: 开始对任意一未染色的顶点染色,之后判断其相邻的顶点中,若未染色则将其染上和相邻顶点不同的颜色, 若已经染色且颜色和相邻顶点的颜色相同则说明不是二分图,若颜色不同则继续判断,bfs和dfs可以搞定!

#include <string.h>

#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <string>
#include <vector>
#include <queue>

using namespace std;

int n;
int e[N][N];

//bfs法
const int N = 1e5+10;
vector <int> G[N];
int col[N];
bool BFS(int u)
{
    queue<int> q;
    q.push(u);
    col[u] = 1;
    while(!q.empty())
    {
        int v = q.front();
        q.pop();
        for(int i=0;i<G[v].size();i++)
        {
            int x = G[v][i];
            if(col[x]==0)
            {
                col[x] = -col[v];
                q.push(x);
            }
            else 
            {
                if(col[x]==col[v]) return false;
            }
        }
    }
    return true;
}

void solve()
{
    for(int i=1;i<=n;i++)
    {
        if(col[i]==0&&!BFS(i))
        {
            cout<<"NO"<<endl;
            return ;
        }
    }
    cout<<"YES"<<endl;
}

//dfs法
int color[N];
bool DFS(int v,int c)
{
    color[v] = c;
    for(int i=0;i<n;i++)
    {
        if(e[v][i]==1)
        {
            if(color[i]==c) return false;
            if(color[i]==0&&!DFS(i,-c)) return false;
        }
    }
    return true;
}

最大匹配

概念

交替路:从一个未匹配的点出发,依次经过未匹配边、匹配边、未匹配边…这样的路叫做交替路。
增广路:从一个未匹配的点出发,走交替路,到达了一个未匹配过的点,这条路叫做增广路。例如P是图G中一条连通两个未匹配顶点的路径,并且属M的边和不属M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径.
由增广路的定义可以推出下述三个结论
1.P的路径长度必定为奇数,第一条边和最后一条边都不属于M.
2.P经过取反操作可以得到一个更大的匹配M’.
3.M为G的最大匹配当且仅当不存在相对于M的增广路径.

匈牙利算法

这里有篇通俗易懂的博客链接: link.

#include <string.h>

#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <queue>
#include <string>
#include <vector>

using namespace std;

const int N = 500;
int n,p,match[N];
bool book[N],e[N][N];

int dfs(int u)
{
    for(int i=1;i<=p;i++)
    {
        if(e[u][i]==1&&!book[i])
        {
            book[i] = 1;
            if(match[i]==0||dfs(match[i]))
            {
                match[i] = u;
                return 1;
            }
        }
    }
    return 0;
}

void solve()
{
    int ans = 0;
    for(int i=1;i<=n;i++)
    {
        memset(book,0,sizeof(book));
        if(dfs(i)) ans++;
    }
    cout<<ans<<endl;
}

最大权匹配

如果二分图的每条边都有一个权(可以是负数),要求一种完备匹配方案,使得所有匹配边的权和最大,记做最佳完美匹配。(特殊的,当所有边的权为1时,就是最大完备匹配问题)我们使用KM算法解决该问题。KM是对匈牙利算法的一种贪心扩展,这种贪心不是对边的权值的贪心,算法发明者引入了一些新的概念,从而完成了这种扩展。

KM算法流程

1.可行顶标:每个点有一个标号,记(x i ∈ X , y j ∈ Y )。如果对于图中的任意边edge(i,j)都有lx[i]+ly[j]>=weight(i,j)lx[i]+ly[j]>=weight(i,j),则这一顶标是可行的。特别地,对于lx[i]+ly[j]=weight(i,j),称为可行边(也就是相等子图里的边)
2.KM 算法的核心思想就是通过修改某些点的标号(但要满足点标始终是可行的),不断增加图中的可行边总数,直到图中存在仅由可行边组成的完全匹配为止,此时这个 匹配一定是最佳的(证明上文已经给出)
3.初始化:lx[i]=Max(edge(i,j)),xi∈X, edge(i,j)∈E, ly[j]=0。这个初始顶标显然是可行的,并且,与任意一个X方点关联的边中至少有一条可行边
4.从每个X方点开始DFS增广。DFS增广的过程与最大匹配的Hungary算法基本相同,只是要注意两点:一是只找可行边,二是要把搜索过程中遍历到的X方点全部记下来,以便进行后面的修改
5.增广的结果有两种:若成功(找到了增广路),则该点增广完成,进入下一个点的增广。若失败(没有找到增广路),则需要改变一些点的标号,使得图中可行边的 数量增加。
6.修改后,继续对这个X方点DFS增广,若还失败则继续修改,直到成功为止

#include <iostream>
#include <cstring>
#include <cstdio>
 
using namespace std;
const int MAXN = 305;
const int INF = 0x3f3f3f3f;
 
int love[MAXN][MAXN];   // 记录每个妹子和每个男生的好感度
int ex_girl[MAXN];      // 每个妹子的期望值
int ex_boy[MAXN];       // 每个男生的期望值
bool vis_girl[MAXN];    // 记录每一轮匹配匹配过的女生
bool vis_boy[MAXN];     // 记录每一轮匹配匹配过的男生
int match[MAXN];        // 记录每个男生匹配到的妹子 如果没有则为-1
int slack[MAXN];        // 记录每个汉子如果能被妹子倾心最少还需要多少期望值
 
int N;
 
 
bool dfs(int girl)
{
    vis_girl[girl] = true;
 
    for (int boy = 0; boy < N; ++boy) {
 
        if (vis_boy[boy]) continue; // 每一轮匹配 每个男生只尝试一次
 
        int gap = ex_girl[girl] + ex_boy[boy] - love[girl][boy];
 
        if (gap == 0) {  // 如果符合要求
            vis_boy[boy] = true;
            if (match[boy] == -1 || dfs( match[boy] )) {    // 找到一个没有匹配的男生 或者该男生的妹子可以找到其他人
                match[boy] = girl;
                return true;
            }
        } else {
            slack[boy] = min(slack[boy], gap);  // slack 可以理解为该男生要得到女生的倾心 还需多少期望值 取最小值 备胎的样子【捂脸
        }
    }
 
    return false;
}
 
int KM()
{
    memset(match, -1, sizeof match);    // 初始每个男生都没有匹配的女生
    memset(ex_boy, 0, sizeof ex_boy);   // 初始每个男生的期望值为0
 
    // 每个女生的初始期望值是与她相连的男生最大的好感度
    for (int i = 0; i < N; ++i) {
        ex_girl[i] = love[i][0];
        for (int j = 1; j < N; ++j) {
            ex_girl[i] = max(ex_girl[i], love[i][j]);
        }
    }
 
    // 尝试为每一个女生解决归宿问题
    for (int i = 0; i < N; ++i) {
 
        fill(slack, slack + N, INF);    // 因为要取最小值 初始化为无穷大
 
        while (1) {
            // 为每个女生解决归宿问题的方法是 :如果找不到就降低期望值,直到找到为止
 
            // 记录每轮匹配中男生女生是否被尝试匹配过
            memset(vis_girl, false, sizeof vis_girl);
            memset(vis_boy, false, sizeof vis_boy);
 
            if (dfs(i)) break;  // 找到归宿 退出
 
            // 如果不能找到 就降低期望值
            // 最小可降低的期望值
            int d = INF;
            for (int j = 0; j < N; ++j)
                if (!vis_boy[j]) d = min(d, slack[j]);
 
            for (int j = 0; j < N; ++j) {
                // 所有访问过的女生降低期望值
                if (vis_girl[j]) ex_girl[j] -= d;
 
                // 所有访问过的男生增加期望值
                if (vis_boy[j]) ex_boy[j] += d;
                // 没有访问过的boy 因为girl们的期望值降低,距离得到女生倾心又进了一步!
                else slack[j] -= d;
            }
        }
    }
 
    // 匹配完成 求出所有配对的好感度的和
    int res = 0;
    for (int i = 0; i < N; ++i)
        res += love[ match[i] ][i];
 
    return res;
}
 
int main()
{
    while (~scanf("%d", &N)) {
 
        for (int i = 0; i < N; ++i)
            for (int j = 0; j < N; ++j)
                scanf("%d", &love[i][j]);
 
        printf("%d\n", KM());
    }
    return 0;
}        

推荐一个博客,帮助大家更好的理解
链接: link.

覆盖和独立集

性质

二分图中,点覆盖数是匹配数。
(1)二分图的最大匹配数等于最小覆盖数,即求最少的点使得每条边都至少和其中的一个点相关联,很显然直接取最大匹配的一段节点即可。
(2)二分图的独立数等于顶点数减去最大匹配数,很显然的把最大匹配两端的点都从顶点集中去掉这个时候剩余的点是独立集,这是|V|-2*|M|,同时必然可以从每条匹配边的两端取一个点加入独立集并且保持其独立集性质。
(3)DAG的最小路径覆盖,将每个点拆点后作最大匹配,结果为n-m,求具体路径的时候顺着匹配边走就可以,匹配边i→j’,j→k’,k→l’…构成一条有向路径。
(4)最大匹配数=左边匹配点+右边未匹配点。因为在最大匹配集中的任意一条边,如果他的左边没标记,右边被标记了,那么我们就可找到一条新的增广路,所以每一条边都至少被一个点覆盖。
(5)最小边覆盖=图中点的个数-最大匹配数=最大独立集。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值