hdu 1695 GCD(欧拉函数+容斥原理)

GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2346    Accepted Submission(s): 850

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.

 

Output
For each test case, print the number of choices. Use the format in the example.

 

Sample Input
 
 
2 1 3 1 5 1 1 11014 1 14409 9

 

Sample Output
 
 
Case 1: 9 Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
          

题目大意:

给你a, b, c, d, k; 找出这样的一队 x, y 使得 gcd(x , y) = k, 并且x [1, b], y [1, d], 问有多少对符合要求的(x, y)

------------------------------------------------------------------------------

 

思路: gcd(x, y) == k 说明x,y都能被k整除, 但是能被k整除的未必gcd=k  , 必须还要满足互质关系. 问题就转化为了求1~a/k 和 1~b/k间互质对数的问题可以把a设置为小的那个数, 那么以y>x来保持唯一性(题目要求, 比如[1,3] =[3,1] )

接下来份两种情况:

1. y <= a , 那么对数就是 1~a的欧拉函数的累计和(容易想到)

2. y >= a , 这个时候欧拉函数不能用了,怎么做?  可以用容斥原理,把y与1~a互质对数问题转换为y的质数因子在1~a范围内能整除的个数(质数分解和容斥关系),dfs一下即可。

链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695

代码:

#include <iostream>
#include <stdio.h>
#include <memory.h>
#include <vector>
using namespace std;

const int N = 100005;
typedef long long LL;

LL prime[N];
LL phi[N];
bool is_prime[N];
vector<LL> link[N];

void get_phi()  //筛法欧拉函数
{
    LL i, j, k = 0;
    phi[1] = 1;
    for(i = 2; i < N; i++)
    {
        if(is_prime[i] == false)
        {
            prime[k++] = i;
            phi[i] = i-1;
        }
        for(j = 0; j<k && i*prime[j]<N; j++)
        {
            is_prime[ i*prime[j] ] = true;
            if(i%prime[j] == 0)
            {
                phi[ i*prime[j] ] = phi[i] * prime[j];
                break;
            }
            else
            {
                phi[ i*prime[j] ] = phi[i] * (prime[j]-1);
            }
        }
    }
}

void init()     //求每一个数的质因数,vector储存
{
    LL i, j, k;
    for(i = 1; i < N; i++)
    {
        k = i;
        for(j = 0; prime[j]*prime[j] <= k; j++)
        {
            if(k%prime[j] == 0)
            {
                link[i].push_back(prime[j]);
                while(k%prime[j] == 0)
                    k /= prime[j];
            }
            if(k == 1) break;
        }
        if(k > 1) link[i].push_back(k);
    }
}

LL dfs(LL a, LL b, LL cur)  //容斥原理计算
{
    LL i, k, res = 0;
    for(i = a; i < link[cur].size(); i++)
    {
        k = b/link[cur][i];
        res += k - dfs(i+1, k, cur);
    }
    return res;
}

int main()
{
    LL i, a, b, c, d, k, sum, t, zz = 1;
    get_phi();
    init();
    scanf("%I64d", &t);
    while(t--)
    {
        scanf("%I64d %I64d %I64d %I64d %I64d", &a, &b, &c, &d, &k);
        if(k == 0 || k > b || k > d)
        {
            printf("Case %I64d: 0\n", zz++);
            continue;
        }
        if(b > d) swap(b, d);
        b /= k;
        d /= k;
        sum = 0;
        for(i = 1; i <= b; i++)
        {
            sum += phi[i];
        }
        for(i = b+1; i <= d; i++)
        {
            sum += b - dfs(0, b, i);
        }
        printf("Case %I64d: %I64d\n", zz++, sum);
    }

    return 0;
}

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值