#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
#define LL __int64
const LL maxn=1e5+10;
LL prime[maxn+10];
LL phi[maxn+10],vis[maxn+10],num[maxn+10];
vector<LL> e[maxn];
void phi_table()//求出所有的欧拉函数
{
LL i,j;
for(i=2;i<=maxn;i++)phi[i]=0;
phi[1]=1;
for(i=2;i<=maxn;i++)if(!phi[i])
for(j=i;j<=maxn;j+=i)
{
if(!phi[j])
phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
void sieve()
{
LL i,j,m=(LL)sqrt(maxn+0.5);
memset(vis,0,sizeof(vis));
for(i=2;i<=m;i++)
{
if(!vis[i])
for(j=i*i;j<=maxn;j+=i)vis[j]=1;
}
}
void gen_primes()//求出素数表
{
sieve();
LL i,c=0;
for(i=2;i<=maxn;i++)if(!vis[i])
prime[c++]=i;
}
void init() //初始化
{
LL i,j,k;
phi_table();
gen_primes();
for(i=1;i<maxn;i++)
{
k=i;
for(j=0;prime[j]*prime[j]<=k;j++)
{
if(k%prime[j]==0)
{
e[i].push_back(prime[j]);//储存i的所有质因子
while(k%prime[j]==0)
k/=prime[j];
}
}
if(k>1)e[i].push_back(k);
}
}
LL get_sum(LL a)//求a的二进制表示中1的个数,用于容斥法,奇加偶减
{
LL s=0;
while(a)
{
if(a&1)
s++;
a=a>>1;
}
return s;
}
LL dfs(LL a,LL b)//容斥法求1~b中与a不互质的个数
{
LL t,i,j,k,ans=0,flag,s;
t=e[a].size();
for(i=1;i<(1<<t);i++)
{
if(get_sum(i)%2)flag=1;
else flag=-1;
s=1;
for(j=0;j<t;j++)
{
if(i&(1<<j))s*=e[a][j];
}
ans+=flag*(b/s);
}
return ans;
}
int main()
{
LL L,a,b,c,d,k,i,j,sum,tt=0,T;
init();
cin>>T;
while(T--)
{
cin>>a>>b>>c>>d>>k;
if(k==0||k>b||k>d)
{
cout<<"Case "<<++tt<<": 0"<<endl;
continue;
}
if(b>d) swap(b,d);
b/=k;
d/=k;
sum = 0;
for(i=1;i<=b;i++)
sum+=phi[i];
for(i=b+1;i<=d;i++)
sum+=b-dfs(i,b);
cout<<"Case "<<++tt<<": "<<sum<<endl;
}
return 0;
}
/*
本题简单化,a=c=1;
所以只用求1~x和1~y中有多少对gcd(p,q)==1,其中1<=p<=x,1<=q<=y,x=b/k,y=d/k;
因为如果gcd(p,q)==1,则gcd(p*k,q*k)==k(p*k<=b,q*k<=d)
由于跟p,q顺序无关,所以交换使x>y,并令p>q,则当1<=p<=y,时(p,qi)的个数就是phi[p],欧拉函数,表示不大于p的与p互质的个数;
当y<p<=x,可以通过求1~y中有多少个数与p不互质,反求互质的个数。判断1~y中有多少个数与p不互质,由于1~y中的数如果是p的某个质因子倍数数,
则必定不互质,否则必定互质。因而可以用容斥原理求。(奇加偶减)
*/
简化版:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
#define LL __int64
const LL maxn=1e5+10;
LL prime[maxn+10];
LL phi[maxn+10],vis[maxn+10],num[maxn+10];
LL e[maxn][7];
void init() //初始化
{
LL i,j;
for(i=2;i<=maxn;i++)phi[i]=0;
phi[1]=1;
memset(num,0,sizeof(num));
for(i=2;i<=maxn;i++)
{
if(!phi[i])
{
for(j=i;j<=maxn;j+=i)
{
if(!phi[j])
phi[j]=j;
phi[j]=phi[j]/i*(i-1);
e[j][num[j]++]=i;//这里不要用vector,会超时的
}
}
}
}
LL dfs(LL a,LL b,LL c)//递归求容斥
{
LL i,ans=0,t;
for(i=a;i<num[c];i++)
{
t=b/e[c][i];
ans+=t-dfs(i+1,t,c);
}
return ans;
}
int main()
{
LL L,a,b,c,d,k,i,j,sum,tt=0,T;
init();
cin>>T;
while(T--)
{
cin>>a>>b>>c>>d>>k;
if(k==0||k>b||k>d)
{
cout<<"Case "<<++tt<<": 0"<<endl;
continue;
}
if(b>d) swap(b,d);
b/=k;
d/=k;
sum = 0;
for(i=1;i<=b;i++)
sum+=phi[i];
for(i=b+1;i<=d;i++)
{
//sum+=b-dfs(i,b);
sum+=b-dfs(0,b,i);
}
cout<<"Case "<<++tt<<": "<<sum<<endl;
}
return 0;
}