simhash

转子:

http://blog.sina.com.cn/s/blog_81e6c30b0101cpvu.html

 

### SimHash算法在Linux系统中的实现与应用 SimHash是一种局部敏感哈希算法,用于检测文档相似度。该算法通过将文本转换成固定长度的指纹向量来表示原始数据,并能够高效计算两个文档之间的汉明距离以判断其相似程度。 #### 实现原理 为了创建SimHash,在处理输入文本时会执行如下操作: - 对于每一个特征(通常是词),生成一个随机超平面并分配权。 - 如果某个单词存在于给定的文章中,则根据预先设定好的规则调整对应维度上值的方向(正负号)。 - 将所有这些加权后的向量求和得到最终的结果向量;如果某一位大于零则设为1,小于等于零就置0[^3]。 #### 应用场景 在Linux环境下,SimHash可以应用于多个方面,比如文件、网页抓取过程中过滤复页面以及垃圾邮件识别等任务当中。具体来说,当涉及到大量非结构化信息管理的时候,利用这种技术可以帮助快速定位近似副本而无需逐一比较整个内容体。 #### Python代码示例 下面是一个简单的Python版本SimHash实现方式,可以在任何支持Python解释器运行的操作系统环境中使用,包括但不限于Linux平台: ```python import hashlib def simhash(text): # 初始化64位整数列表作为特征向量 vector = [0]*64 words = text.split() for word in words: hash_value = int(hashlib.md5(word.encode('utf-8')).hexdigest(), 16) for i in range(64): bitmask = 1 << i if hash_value & bitmask: vector[i] += 1 else: vector[i] -= 1 fingerprint = '' for num in vector: if num > 0: fingerprint += '1' else: fingerprint += '0' return fingerprint if __name__ == '__main__': sample_text_1 = "this is a test sentence" sample_text_2 = "this was an example of testing sentences" print(f"Fingerprint for '{sample_text_1}': {simhash(sample_text_1)}") print(f"Fingerprint for '{sample_text_2}': {simhash(sample_text_2)}") ``` 此脚本定义了一个`simhash()`函数接收字符串参数返回对应的二进制形式指纹串。这里采用了MD5散列方法获取每个词语的位置编码,并以此构建起整体文章的签名模式[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值