反余弦函数是余弦函数的反函数(y=cosx(x∈[0,π])的反函数叫做反余弦函数),记作y=arccosx(x∈[-1,1])。
其x,y取值曲线参见附件图。
可见,其取值范围,随着x从0向-1和1的趋势逼近,它们的表现;
如果假设有两个参数啊,a和b通过抽象为此函数x,y关系,有两个概念来表明它们之间关系距离,分别为[b]差异性[/b]和[b]对立性[/b]。
那么,则有:x0~1阶段,y越来越接近0;这表明a和b之间的差异性越来越小,既它们的关系距离趋向于零;
[b]当x为1时[/b],它们的差异性为零,既它们的关系距离为零,事实上可以证明[b]a即等同于b[/b];
当x0~-1阶段,y越来越接近2π;这表明a和b之间的对立性越来越大,既它们的关系距离趋向于最大化2π远;
[b]当x为-1时[/b],它们的对立性最大,既它们的关系距离为2π,事实上可以证明a和b完全相反,为[b]反物质[/b];
其中,[b]当x为0时[/b],y等于π,为差异性最大值,对立性可认为为0,既它们的关系距离趋向于最大化π远,事实上可表明a,b为没有关联完全不同的[b]两种物质[/b];
其抽象的python实现参见mit算法课代码:[u]http://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/docdist1.py[/u]
其x,y取值曲线参见附件图。
可见,其取值范围,随着x从0向-1和1的趋势逼近,它们的表现;
如果假设有两个参数啊,a和b通过抽象为此函数x,y关系,有两个概念来表明它们之间关系距离,分别为[b]差异性[/b]和[b]对立性[/b]。
那么,则有:x0~1阶段,y越来越接近0;这表明a和b之间的差异性越来越小,既它们的关系距离趋向于零;
[b]当x为1时[/b],它们的差异性为零,既它们的关系距离为零,事实上可以证明[b]a即等同于b[/b];
当x0~-1阶段,y越来越接近2π;这表明a和b之间的对立性越来越大,既它们的关系距离趋向于最大化2π远;
[b]当x为-1时[/b],它们的对立性最大,既它们的关系距离为2π,事实上可以证明a和b完全相反,为[b]反物质[/b];
其中,[b]当x为0时[/b],y等于π,为差异性最大值,对立性可认为为0,既它们的关系距离趋向于最大化π远,事实上可表明a,b为没有关联完全不同的[b]两种物质[/b];
其抽象的python实现参见mit算法课代码:[u]http://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/docdist1.py[/u]