对反正弦函数的泰勒公式的转换加速

反正弦函数的泰勒公式为:arcsin(x)=x+1/2*x^3/3+  1/2*3/4*x^5/5+ 1/2*3/4*5/6*x^7/7+.............   
∑(n=1~∞) [(2n)!]x^(2n+1)/[4^n*(n!)^2*(2n+1)]
  
                 
设Ga 为 3  5  7  ....的最小公倍数
化为:arcsin(x)=x+x*1/2*x^2(1/3+3/4*x^2(1/5+5/6*x^2(1/7......)))
                         
                  =x+(x*x^2*1/2(Ga/3+x^2*3/4(Ga/5+x^2*5/6(Ga/7......)))   )/Ga

最小公倍数的位长小于计算精度时,除法运算开始加速,需要除法有除尽判断功能.

另外换算成这种形式利于编程实现。

这个公式类似的测试在我的贴子:基于泰勒展开式的高精三角函数实现 - 第3页 - 算法交流 - 数学研发论坛 - Powered by Discuz! http://bbs.emath.ac.cn/thread-8882-3-1.html
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_34030789/article/details/51537897
上一篇高精度对数函数的实现二
下一篇高精度反三角函数的实现
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭