【深入】浮点数的存储与精度丢失问题

本文将以float为例子讲解浮点数的存储与精度丢失
首先来看看:
float f = 12.0f - 11.9f; System.err.println(f);

结果是:0.10000038,而不是预想中的0.1

float存储解析


1、float在java中为4字节存储,32位分别如下

float在计算机中的存储计算方法:
(1). 先将这个实数的绝对值化为二进制格式,方法是:实数的整数部分是除2取余和小数部分是乘2取整
(2). 将这个二进制格式实数的小数点左移或右移n位,直到小数点移动到第一个有效数字的右边。
(3). 从小数点右边第一位开始数出二十三位数字放入第22到第0位。
(4). 如果实数是正的,则在第31位放入“0”,否则放入“1”。
(5). 如果n 是左移得到的,说明指数是正的,第30位放入“1”。如果n是右移得到的或n=0,则第30位放入“0”。
(6). 如果n是左移得到的,则将n减去1后化为二进制,并在左边加“0”补足七位,放入第29到第23位。如果n是右移得到的或n=0,则将n化为二进制后在左边加“0”补足七位,再各位求反,再放入第29到第23位。

根据上面那个步骤计算11.9的二进制表现形式:
(1)11.9转化为二进制:1011. 1110,0110,0110,0110,0110,0110,....
(2)将小数点左移三位到第一个有效位右侧:1. 011 11100110011001100110"。 保证有效位数24位,右侧多余的截取(误差在这里产生了 )
(3) 这已经有了二十四位有效数字,将最左边一位“1”去掉,得到011 11100110011001100110共23位。将它放入float存储结构的第22到第0位。
(4) 因为11.9是正数,因此在第31位实数符号位放入“0”
(5) 由于我们把小数点左移,因此在第30位指数符号位放入“1”
(6) 因为我们是把小数点左移3位,因此将3减去1得2,化为二进制,并补足7位得到0000010,放入第29到第23位
最后表示11.9为: 0100,0001,0011,1110,0110,0110,0110,0110

再如23.172001的二进制表现形式:
(1)23.172001二进制形式为:0001,0111.0010,1100,0000,1000,0100,0001....
(2)左移4位得:1.0111.0010,1100,0000,1000,0100,0001
(3)取小数点后23位得: 0111.0010,1100,0000,1000,010(这23位为float数二进制码的后23位)
(4)第31位: 0
(5)第30位: 1
(6)左移4位,(4-1)的二进制0011,不足7位补零,则为:0000,011
最后得23.172001在计算机中的二进制表现形式为:0100,0001,1011,1001,0110,0000,0100,0010

2、将一个内存存储的float二进制格式转化为十进制的步骤:
(1)将第22位到第0位的二进制数写出来,在最左边补一位“1”,得到二十四位有效数字。将小数点点在最左边那个“1”的右边。
(2)取出第29到第23位所表示的值n。当30位是“0”时将n各位求反。当30位是“1”时将n增1。
(3)将小数点左移n位(当30位是“0”时)或右移n位(当30位是“1”时),得到一个二进制表示的实数。
(4)将这个二进制实数化为十进制,并根据第31位是“0”还是“1”加上正号或负号即可。

浮点型的减法运算


浮点加减运算过程比定点运算过程复杂。完成浮点加减运算的操作过程大体分为四步:
(1) 0操作数的检查;
如果判断两个需要加减的浮点数有一个为0,即可得知运算结果而没有必要再进行有序的一些列操作。
(2) 比较阶码(指数位)大小并完成对阶;
两浮点数进行加减,首先要看两数的 指数位 是否相同,即小数点位置是否对齐。若两数 指数位 相同,表示小数点是对齐的,就可以进行尾数的加减运算。反之,若两数阶码不同,表示小数点位置没有对齐,此时必须使两数的阶码相同,这个过程叫做对阶 。
如何对 阶(假设两浮点数的指数位为 Ex 和 Ey ):
通过尾数的移位以改变 Ex 或 Ey ,使之相等。 由于浮点表示的数多是规格化的,尾数左移会引起最高有位的丢失,造成很大误差;而尾数右移虽引起最低有效位的丢失,但造成的误差较小,因此,对阶操作规定使尾数右移,尾数右移后使阶码作相应增加,其数值保持不变。很显然,一个增加后的阶码与另一个相等,所增加的阶码一定是小阶。因此在对阶时,总是使小阶向大阶看齐 ,即小阶的尾数向右移位 ( 相当于小数点左移 ) ,每右移一位,其阶码加 1 ,直到两数的阶码相等为止,右移的位数等于阶差 △ E 。
(3) 尾数(有效数位)进行加或减运算;
对阶完毕后就可 有效数位 求和。 不论是加法运算还是减法运算,都按加法进行操作,其方法与定点加减运算完全一样。
(4) 结果规格化并进行舍入处理。

12.0f - 11.9f计算


12.0f 的内存存储格式为: 0 1 0000010 10000000000000000000000
11.9f 的内存存储格式为: 0 1 0000010 011 11100110011001100110
可见两数的指数位完全相同,只要对有效数位进行减法即可。
12.0f-11.9f 结果: 0 1 0000010 00000011001100110011010

将结果还原为十进制为: 0.000 11001100110011010= 0.10000038


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值