最短路径Dijkstra算法的JAVA实现--转载

在城市智能交通中,经常会用到最短路径的问题,比如找最佳的行车路线等,Dijkstra算法做为最经典的求解方法,为我们指明了方向.不过真正想让我了解该算法的原因是在学习ICTCLAS的N-最短路径算法,虽然和我们常用的案例有一点区别,但基本相同,为了更好的理解N-最短路径算法,我又重新把大学时代的数据结构知识搬了出来。
在网上找到一篇文章,非常详细生动(有FLASH动画演示)的描述了该算法的实现,不过第一页右下角的图终点那一列2和3弄反了,看的时候要注意 ,具体的算法描述不再赘述,请参考: http://student.zjzk.cn/course_ware/data_structure/web/tu/tu7.5.1.htm

下面给出我的算法实现具体代码,为了更好的验证程序的正确性,在原来的基础上我又多加了几条边

package com.huqianhao.homework;

import java.util.ArrayList;

public class Dijkstra{
static ArrayList<Side> map = null;

static ArrayList<Integer> redAgg = null;

static ArrayList<Integer> blueAgg = null;

static Side[] parents = null;

public static void main(String[] args){
// 初始化顶点集
int[] nodes = { 0, 1, 3, 2, 4, 5,6 };

// 初始化有向权重图
map = new ArrayList<Side>();
map.add(new Side(0, 1, 10));
map.add(new Side(0, 3, 30));
map.add(new Side(0, 4, 100));
map.add(new Side(1, 2, 50));
map.add(new Side(2, 4, 10));
map.add(new Side(3, 2, 20));
map.add(new Side(3, 4, 60));
map.add(new Side(4, 5, 50));
map.add(new Side(3, 5, 60));
map.add(new Side(5, 6, 10));
map.add(new Side(3, 6, 80));

// 初始化已知最短路径的顶点集,即红点集,只加入顶点0
redAgg = new ArrayList<Integer>();
redAgg.add(nodes[0]);

// 初始化未知最短路径的顶点集,即蓝点集
blueAgg = new ArrayList<Integer>();
for (int i = 1; i < nodes.length; i++)
blueAgg.add(nodes[i]);

// 初始化每个顶点在最短路径中的父结点,及它们之间的权重,权重-1表示无连通
parents = new Side[nodes.length];
parents[0] = new Side(-1, nodes[0], 0);
for (int i = 0; i < blueAgg.size(); i++) {
int n = blueAgg.get(i);
parents[i + 1] = new Side(nodes[0], n, getWeight(nodes[0], n));
}

// 找从蓝点集中找出权重最小的那个顶点,并把它加入到红点集中
while (blueAgg.size() > 0) {
MinShortPath msp = getMinSideNode();
if(msp.getWeight()==-1)
msp.outputPath(nodes[0]);
else
msp.outputPath();

int node = msp.getLastNode();
redAgg.add(node);
// 如果因为加入了新的顶点,而导致蓝点集中的顶点的最短路径减小,则要重要设置
setWeight(node);
}

}

/** *//**
* 得到一个节点的父节点
*
* @param parents
* @param node
* @return
*/
public static int getParent(Side[] parents, int node) {
if (parents != null) {
for (Side nd : parents) {
if (nd.getNode() == node) {
return nd.getPreNode();
}
}
}
return -1;
}

/** *//**
* 重新设置蓝点集中剩余节点的最短路径长度
*
* @param preNode
* @param map
* @param blueAgg
*/
public static void setWeight(int preNode) {
if (map != null && parents != null && blueAgg != null) {
for (int node : blueAgg) {
MinShortPath msp=getMinPath(node);
int w1 = msp.getWeight();
if (w1 == -1)
continue;
for (Side n : parents) {
if (n.getNode() == node) {
if (n.getWeight() == -1 || n.getWeight() > w1) {
n.setWeight(w1);
n.setPreNode(preNode);//重新设置顶点的父顶点
break;
}
}
}
}
}
}

/** *//**
* 得到两点节点之间的权重
*
* @param map
* @param preNode
* @param node
* @return
*/
public static int getWeight(int preNode, int node) {
if (map != null) {
for (Side s : map) {
if (s.getPreNode() == preNode && s.getNode() == node)
return s.getWeight();
}
}
return -1;
}

/** *//**
* 从蓝点集合中找出路径最小的那个节点
*
* @param map
* @param blueAgg
* @return
*/
public static MinShortPath getMinSideNode() {
MinShortPath minMsp = null;
if (blueAgg.size() > 0) {
int index = 0;
for (int j = 0; j < blueAgg.size(); j++) {
MinShortPath msp = getMinPath(blueAgg.get(j));
if (minMsp == null || msp.getWeight()!=-1 && msp.getWeight() < minMsp.getWeight()) {
minMsp = msp;
index = j;
}
}
blueAgg.remove(index);

}
return minMsp;
}

/** *//**
* 得到某一节点的最短路径(实际上可能有多条,现在只考虑一条)
* @param node
* @return
*/
public static MinShortPath getMinPath(int node) {
MinShortPath msp = new MinShortPath(node);
if (parents != null && redAgg != null) {
for (int i = 0; i < redAgg.size(); i++) {
MinShortPath tempMsp = new MinShortPath(node);
int parent = redAgg.get(i);
int curNode = node;
while (parent > -1) {
int weight = getWeight(parent, curNode);
if (weight > -1) {
tempMsp.addNode(parent);
tempMsp.addWeight(weight);
curNode = parent;
parent = getParent(parents, parent);
} else
break;
}

if (msp.getWeight() == -1 || tempMsp.getWeight()!=-1 && msp.getWeight() > tempMsp.getWeight())
msp = tempMsp;
}
}

return msp;
}
}

/** *//**
* 图中的有向边,包括节点名及他的一个前向节点名,和它们之间的权重
*
*/
class Side {
private int preNode; // 前向节点

private int node;// 后向节点

private int weight;// 权重

public Side(int preNode, int node, int weight) {
this.preNode = preNode;
this.node = node;
this.weight = weight;
}

public int getPreNode() {
return preNode;
}

public void setPreNode(int preNode) {
this.preNode = preNode;
}

public int getNode() {
return node;
}

public void setNode(int node) {
this.node = node;
}

public int getWeight() {
return weight;
}

public void setWeight(int weight) {
this.weight = weight;
}

}

class MinShortPath {
private ArrayList<Integer> nodeList;// 最短路径集

private int weight;// 最短路径

public MinShortPath(int node) {
nodeList = new ArrayList<Integer>();
nodeList.add(node);
weight = -1;
}

public ArrayList<Integer> getNodeList() {
return nodeList;
}

public void setNodeList(ArrayList<Integer> nodeList) {
this.nodeList = nodeList;
}

public void addNode(int node) {
if (nodeList == null)
nodeList = new ArrayList<Integer>();
nodeList.add(0, node);
}

public int getLastNode() {
int size = nodeList.size();
return nodeList.get(size - 1);

}

public int getWeight() {
return weight;
}

public void setWeight(int weight) {
this.weight = weight;
}

public void outputPath() {
outputPath(-1);
}

public void outputPath(int srcNode) {
String result = "[";
if (srcNode != -1)
nodeList.add(srcNode);
for (int i = 0; i < nodeList.size(); i++) {
result += "" + nodeList.get(i);
if (i < nodeList.size() - 1)
result += ",";
}
result += "]:" + weight;
System.out.println(result);
}

public void addWeight(int w) {
if (weight == -1)
weight = w;
else
weight += w;
}
}

运行结果如下:

[0,1]:10
[0,3]:30
[0,3,2]:50
[0,3,2,4]:60
[0,3,5]:90
[0,3,5,6]:100

总结:最短路径算法关键先把已知最短路径顶点集(只有一个源点)和未知的顶点分开,然后依次把未知集合的顶点按照最短路径(这里特别强调一下是源点到该顶点的路径权重和,不仅仅是指它和父结点之间的权重,一开始就是在没有这个问题弄清楚)加入到已知结点集中。在加入时可以记录每个顶点的最短路径,也可以在加入完毕后回溯找到每个顶点的最短路径和权重。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值