Dijkstra算法实现(java)

一、Dijkstra算法介绍

  Dijkstra(迪杰斯特拉)算法是求解单源最短路径的经典算法,其原理也是基于贪心策略的。

二、Dijkstra算法原理

  Dijkstra算法设置一个集合 S S S记录已求得的最短路径的顶点,初始时把源点 v 0 v_{0} v0放入 S S S,集合 S S S每并入一个新顶点 v i v_{i} vi,都要修改源点 v 0 v_{0} v0到集合 V − S V-S VS中顶点当前的最短路径长度值。
  在构造的过程中还设置了两个辅助数组:

(1)dist[]:记录从源点 v 0 v_{0} v0到其他各顶点当前的最短路径长度,它的初态为:若从 v 0 v_{0} v0 v i v_{i} vi有弧,则dist[i]为弧上的权值;否则置dist[i]为 ∞ ∞
(2)path[]: path[i]表示从源点到顶点i之间的最短路径的前驱结点。在算法结束时,可根据其值追溯得到源点 v 0 v_{0} v0到顶点 v i v_{i} vi的最短路径。

  假设从顶点0出发,即 v 0 = 0 v_{0}=0 v0=0,集合 S S S最初只包含顶点0,邻接矩阵arcs表示带权有向图,若不存在有向边<i,j>,则arcs [i][j]arcs[i][j]表示有向边<i,j>的权值 ∞ ∞
  Dijkstra算法的步骤如下(不考虑对path[]的操作):

1)初始化:集合S初始为{0},dist[]的初始值dist[i]=arcs[0][i];i=1,2,…,n-1
2)从顶点集合V-S中选出 v j v_{j} vj,满足dist[j]=Min {dist[i]} v i ∈ V − S v_{i} \in V-S viVS v j v_{j} vj就是当前求得的一条从 v 0 v_{0} v0出发的最短路径的终点,令 S = S ∪ j S=S\cup {j} S=Sj
3)修改从 v 0 v_{0} v0出发到集合V-S上任一顶点 v k v_{k} vk可达的最短路径长度:若dist[j]+arcs[j][k]<dist[k],则更新dist [k]=dist[j]+arcs[j][k]
4)重复2)~3)操作共n-1次,直到所有的顶点都包含在S中。

步骤3),每当一个顶点加入S后,可能需要修改源点 v 0 v_{0} v0到集合V-S中可达顶点当前的最短路径长度,下面举一简单例子证明。如下图所示,源点为 v 0 v_{0} v0,初始时S={ v 0 v_{0} v0},dist[1]=4,dist[2]=8,当将 v 1 v_{1} v1并入集合S后,dist[2]需要更新为6。
在这里插入图片描述

三、Dijkstra算法示例

在这里插入图片描述

顶点第1轮第2轮第3轮第4轮
210( v 1 v_{1} v1-> v 2 v_{2} v28( v 1 v_{1} v1-> v 5 v_{5} v5-> v 2 v_{2} v28( v 1 v_{1} v1-> v 5 v_{5} v5-> v 2 v_{2} v2
3 ∞ ∞ 14( v 1 v_{1} v1-> v 5 v_{5} v5-> v 3 v_{3} v313( v 1 v_{1} v1-> v 5 v_{5} v5-> v 4 v_{4} v4-> v 3 v_{3} v39( v 1 v_{1} v1-> v 5 v_{5} v5-> v 2 v_{2} v2-> v 3 v_{3} v3
4 ∞ ∞ 7( v 1 v_{1} v1-> v 5 v_{5} v5-> v 4 v_{4} v4
55( v 1 v_{1} v1-> v 5 v_{5} v5
集合S{1,5}{1,5,4}{1,5,4,2}{1,5,4,2,3}

  从顶点1开始,每次将最短路径的顶点加入集合,根据集合中已有是的顶点,寻找到各个顶点的最短路径。

四、代码实现

package com.haiyang.algorithm.dijkstra;

import com.sun.corba.se.impl.orbutil.graph.Graph;

import java.util.Arrays;

/**
 * @author haiYang
 * @create 2022-02-03 10:33
 */
public class DijkstraAlgorithm {
    public static void main(String[] args) {
        char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        //邻接矩阵
        int[][] matrix = new int[vertex.length][vertex.length];
        final int N = 65535;// 表示不可以连接
        /*                    1  2  3  4   5   */
        matrix[0] = new int[]{N, 10, N, N, 5};/*1*/
        matrix[1] = new int[]{N, N, 1, N, 2};/*2*/
        matrix[2] = new int[]{N, N, N, 4, N};/*3*/
        matrix[3] = new int[]{7, N, 6, N, N};/*4*/
        matrix[4] = new int[]{N, 3, 9, 2, N};/*5*/


        //创建 Graph对象
        DGraph graph = new DGraph(vertex, matrix);
        //测试, 看看图的邻接矩阵是否ok
        graph.showGraph();
        //测试迪杰斯特拉算法
        graph.dijkstra(0);
        graph.showDijkstra('A', 'C');


    }


}

//已访问顶点集合
class VisitedVertex {
    //记录各个顶点是否访问,1表示访问过,0表示未访问过
    public int[] alreadyVertex;
    //表示从源点到顶点i之间的最短路径的前驱结点
    public int[] path;
    //记录从源点到其他各个顶点当前的最短路径长度
    public int[] dist;

    /**
     * 构造器
     *
     * @param vertexNum   顶点数目
     * @param vertexIndex 顶点索引(顶点数组对应的下标)
     */
    public VisitedVertex(int vertexNum, int vertexIndex) {
        this.alreadyVertex = new int[vertexNum];
        this.path = new int[vertexNum];
        this.dist = new int[vertexNum];

        //初始化dist数组,顶点i到其他顶点的距离初始为65536,到自己的距离初始为0。
        Arrays.fill(dist, 65535);
        dist[vertexIndex] = 0;
        //初始顶点已访问
        this.alreadyVertex[vertexIndex] = 1;
    }

    /**
     * 判断该顶点是否已经访问过
     *
     * @param vertexIndex 顶点索引
     * @return
     */
    public boolean isVisited(int vertexIndex) {
        return alreadyVertex[vertexIndex] == 1;
    }

    /**
     * 更新源点到目标顶点的最短路径长度
     *
     * @param objectiveVertexIndex  目标顶点索引
     * @param objectiveVertexLength 目标顶点长度
     */
    public void updateDist(int objectiveVertexIndex, int objectiveVertexLength) {
        dist[objectiveVertexIndex] = objectiveVertexLength;
    }

    /**
     * 更新源点到该顶点最短路径下,该顶点的前驱顶点
     *
     * @param preVertexIndex 前驱顶点
     * @param VertexIndex    该顶点
     */
    public void updatePath(int VertexIndex, int preVertexIndex) {
        path[VertexIndex] = preVertexIndex;
    }

    /**
     * 返回源点到该顶点的上一次更新的最短路径
     * 用于判断此次是否更新最短路径长度
     *
     * @param vertexIndex
     * @return
     */
    public int getDist(int vertexIndex) {
        return dist[vertexIndex];
    }

    /**
     * 寻找与源点之间最短距离且未访问顶点的索引
     *
     * @return
     */
    public int updateArr() {
        int min = 65536, index = 0;
        for (int i = 0; i < alreadyVertex.length; i++) {
            if (alreadyVertex[i] == 0 && dist[i] < min) {
                min = dist[i];
                index = i;
            }
        }
        alreadyVertex[index] = 1;
        return index;
    }

    public void show(char begin, char end) {
        System.out.println("===================");
        int beginIndex = 0;
        int endIndex = 0;
        char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        for (int i = 0; i < vertex.length; i++) {
            if (vertex[i] == begin) {
                beginIndex = i;
            }
            if (vertex[i] == end) {
                endIndex = i;
            }
        }

        System.out.println(begin + " -> " + end + "的最短距离为:" + dist[endIndex]);
        System.out.print(begin + " -> " + end + "的最短路径为:");
        showPath(beginIndex, endIndex);
        System.out.println(vertex[endIndex]);


    }

    /**
     * 通过递归遍历先驱数组path返回最短路径
     *
     * @param beginIndex
     * @param endIndex
     */
    private void showPath(int beginIndex, int endIndex) {
        char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        if (path[endIndex] == beginIndex) {
            System.out.print(vertex[beginIndex] + " -> ");
            return;
        } else {
            showPath(beginIndex, path[endIndex]);
        }
        System.out.print(vertex[path[endIndex]] + " -> ");
    }

}

class DGraph {
    private char[] vertex;//顶点数组
    private int[][] arcs;//邻接矩阵
    private VisitedVertex visitedVertex;


    public DGraph(char[] vertex, int[][] arcs) {
        this.vertex = vertex;
        this.arcs = arcs;
    }

    public void showGraph() {
        for (int[] link : arcs) {
            System.out.println(Arrays.toString(link));
        }
    }

    /**
     * dijkstra算法
     *
     * @param index 出发顶点的下标
     */
    public void dijkstra(int index) {
        visitedVertex = new VisitedVertex(vertex.length, index);
        update(index);
        for (int i = 1; i < vertex.length; i++) {
            index = visitedVertex.updateArr();
            update(index);
        }

    }

    //更新index下标顶点到周围顶点的距离和周围顶点的前驱顶点
    public void update(int index) {
        int len = 0;
        //根据邻接矩阵找到邻接顶点
        for (int i = 0; i < arcs[index].length; i++) {
            //从出发顶点到index顶点的距离+ 从index顶点到i顶点的距离的和
            len = visitedVertex.getDist(index) + arcs[index][i];
            if (!visitedVertex.isVisited(i) && len < visitedVertex.getDist(i)) {
                visitedVertex.updatePath(i, index);//更新前驱顶点
                visitedVertex.updateDist(i, len); //更新最短距离
            }

        }

    }

    public void showDijkstra(char begin, char end) {
        visitedVertex.show(begin, end);
    }

}
Dijkstra算法是一种用于在加权图中找到最短路径的算法,它可以处理没有负权边的图。算法的基本思想是,从源点开始,逐步增加到其他顶点的距离,直到找到最短路径为止。Dijkstra算法采用贪心策略,每次找到距离源点最近的一个未被访问的顶点,并更新其他顶点到源点的距离。 在Java实现Dijkstra算法通常需要使用优先队列来优化查找当前距离源点最近顶点的过程。以下是Dijkstra算法Java实现的一个简单例子: ```java import java.util.*; class Dijkstra { // 图的顶点数量 private static final int N = 9; // Dijkstra算法实现 public static void dijkstra(int[][] graph, int startVertex) { // 记录源点到每个顶点的最短路径 int[] dist = new int[N]; // 初始化距离数组,所有顶点距离设置为无穷大 Arrays.fill(dist, Integer.MAX_VALUE); // 用于标记顶点是否被访问过 boolean[] visited = new boolean[N]; // 起始点到自身的距离是0 dist[startVertex] = 0; // 用优先队列优化查找最小距离的顶点 PriorityQueue<Integer> pq = new PriorityQueue<>(Comparator.comparingInt(i -> dist[i])); // 将起始点加入优先队列 pq.add(startVertex); while (!pq.isEmpty()) { // 从优先队列中选出距离最小的顶点 int u = pq.poll(); // 如果这个顶点已经被访问过,跳过 if (visited[u]) continue; // 标记顶点为已访问 visited[u] = true; // 遍历所有邻接的顶点 for (int v = 0; v < N; v++) { // 如果顶点u到顶点v存在边,并且顶点v未被访问 if (graph[u][v] != 0 && !visited[v]) { // 计算源点通过顶点u到顶点v的路径长度 int newDist = dist[u] + graph[u][v]; // 如果新的路径长度小于当前记录的路径长度,则更新之 if (newDist < dist[v]) { dist[v] = newDist; // 将顶点v加入优先队列 pq.add(v); } } } } // 输出从源点到每个顶点的最短路径长度 for (int i = 0; i < N; i++) { System.out.println("Distance from vertex " + startVertex + " to vertex " + i + " is " + dist[i]); } } public static void main(String[] args) { // 示例图的邻接矩阵表示 int[][] graph = { {0, 4, 0, 0, 0, 0, 0, 8, 0}, {4, 0, 8, 0, 0, 0, 0, 11, 0}, {0, 8, 0, 7, 0, 4, 0, 0, 2}, {0, 0, 7, 0, 9, 14, 0, 0, 0}, {0, 0, 0, 9, 0, 10, 0, 0, 0}, {0, 0, 4, 14, 10, 0, 2, 0, 0}, {0, 0, 0, 0, 0, 2, 0, 1, 6}, {8, 11, 0, 0, 0, 0, 1, 0, 7}, {0, 0, 2, 0, 0, 0, 6, 7, 0} }; // 从顶点0开始计算最短路径 dijkstra(graph, 0); } } ``` 在这个例子中,`graph`是一个图的邻接矩阵表示,`dijkstra`方法实现Dijkstra算法,`main`方法用于测试算法。请注意,这个例子假设图是用邻接矩阵表示的,并且顶点编号从0开始。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HEU_THY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值